Document Type: Original Articles

Authors

1 Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.

2 Department of Endocrine and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.

3 Research Center for Health Sciences, Department of Epidemiology, Shiraz University of Medical Sciences, Shiraz, Iran.

Abstract

Background: Diabetes Mellitus (DM) is closely associated with reduction of antioxidant defense system. In the present study, we investigated the antioxidant effect of quercetin supplementation on the glycemic control, lipid profile and oxidative stress indices in patients with type 2diabetes. Methods: Forty seven patients with type 2 diabetes, aged 30-60 years old, were randomly assigned to supplement their daily diet with either an oral quercetin (250 mg/d) or identical placebo (cellulose) capsules for 8 weeks. The supplements were provided to the patients biweekly. Anthropometric data as well as glycemic indices, lipid profile and oxidative stress parameters of blood samples were determined at the baseline and endpoint of the study. Results: Dietary quercetin supplementation significantly improved the total antioxidant capacity (TAC) in the intervention group, when compared to the placebo group (P=0.043). It also resulted in a statistically significant reduction in serum concentration of atherogenic oxidized LDL (ox-LDL) (P0.05). Conclusions: Oral quercetin supplementation was beneficial in improving the antioxidant status of patients with type 2 diabetes while having no other significant effect on glycemic control and lipid profile; however, conducting further studies, using different doses, on the glycemiccontrol and/or hyperlipidemia of thepopulation seems to be valuable. Trial Registration Number: IRCT2012101911168N

Keywords

  1. Moghissi ES, Korytkowski MT, DiNardo M, Einhorn
  2. D, Hellman R, Hirsch IB, et al. American Association
  3. of Clinical Endocrinologists and American Diabetes
  4. Association Consensus Statement on Inpatient
  5. Glycemic Control. Diabetes Care. 2009; 32(6): 1119-31.
  6. American Diabetes Association. Standards of Medical
  7. Care in Diabetes-2009. Diabetes Care 2009; 32: S13-61.
  8. Khatib OMN editor. Guidelines for the prevention,
  9. management and care of diabetes mellitus. 1st ed.
  10. World Health Organization, Regional Office for the
  11. Eastern Mediterranean; 2006.
  12. Shen GX. Lipid Disorders in Diabetes Mellitus
  13. and Current Management. Current Pharmaceutical
  14. Analysis 2007; 3: 17-24.
  15. Agardh E, Allebeck P, Hallqvist J, Moradi T, Sidorchuk
  16. A. Type 2 diabetes incidence and socio-economic
  17. position: a systematic review and meta-analysis. Int
  18. J Epidemiol 2011; 40: 804-18.
  19. Heinisch BB, Francesconi M, Mittermayer F, Schaller
  20. G, Gouya G, Wolzt M, et al. Alpha-lipoic acid improves vascular endothelial function in patients with type 2
  21. diabetes: a placebo-controlled randomized trial. Eur
  22. J Clin Invest 2010; 40: 148-54.
  23. Lai MH. Antioxidant effects and insulin resistance
  24. improvement of chromium combined with vitamin C
  25. and E supplementation for type 2 diabetes mellitus. J
  26. Clin Biochem Nutr 2008; 43: 191-8.
  27. Brasnyo P, Molnar GA, Mohas M, Marko L, Laczy B,
  28. Cseh J, et al. Resveratrol improves insulin sensitivity,
  29. reduces oxidative stress and activates the Akt pathway
  30. in type 2 diabetic patients. Br J Nutr 2011; 106: 383-9.
  31. Roussel AM, Kerkeni A, Zouari N, Mahjoub S,
  32. Matheau JM, Anderson RA. Antioxidant effects of
  33. zinc supplementation in Tunisians with type 2 diabetes
  34. mellitus. J Am Coll Nutr 2003; 22: 316-21.
  35. Dias AS, Porawski M, Alonso M, Marroni N, Collado
  36. PS, Gonza´ lez-Gallego J. Quercetin decreases oxidative
  37. stress, NF-κBactivation, and iNOS overexpression in
  38. liver of streptozotocin-induced diabetic rats. J Nutr
  39. ; 135: 2299-304.
  40. Ajay M, Achike FI, Mustafa AM, Mustafa MR. Effect
  41. of quercetin on altered vascular reactivity in aortas
  42. isolated from streptozotocin-induced diabetic rats.
  43. Diabetes Res Clin Pr 2006; 73: 1-7.
  44. Anderson RA. Chromium and polyphenols from
  45. cinnamon improve insulin sensitivity. Proc Nutr Soc
  46. ; 67: 48-53.
  47. Anderson RA, Roussel AM, Zouari N, Mahjoub S,
  48. Matheau JM, Kerkeni A. Potential antioxidant effects
  49. of zinc and chromium supplementation in people with
  50. type 2 diabetes mellitus. J Am Coll Nutr 2001; 20:
  51. -8.
  52. Duarte J, PeÂrez-Palencia R, Vargas F, Ocete MA,
  53. PeÂrez-Vizcaino F, Zarzuelo A, et al. Antihypertensive
  54. effects of the flavonoid quercetin in spontaneously
  55. hypertensive rats. Br J Pharmacol 2001; 133: 117-24.
  56. Egert S, Wolffram S, Schulze B, Langguth P,
  57. Hubbermann EM, Schwarz K, et al. Enriched
  58. cereal bars are more effective in increasing plasma
  59. quercetincompared with quercetin from powder-filled
  60. hard capsules. Br J Nutr 2011; 1-8.
  61. Edwards RL, Lyon T, Litwin SE, Rabovsky A, Symons
  62. JD, JaliliT. Quercetin Reduces Blood Pressure in
  63. Hypertensive Subjects. J Nutr 2007; 137: 2405-11.
  64. Garcı´a-Lafuente A, Guillamo´n E, Villares A, Rostagno
  65. MA, Martı´nezJA. Flavonoids as anti-inflammatory
  66. agents: implications in cancer and cardiovascular
  67. disease. Inflamm Res 2009; 58: 537-52.
  68. Loke WM, Hodgson JM, Proudfoot JM, McKinley
  69. AJ, P uddey I B, Croft K D. P ure d ietary flavonoids
  70. quercetin and (_)-epicatechin augment nitric oxide
  71. products and reduce endothelin-1 acutely in healthy
  72. men. Am J ClinNutr 2008; 88: 1018-25.
  73. Egert S, Bosy-Westphal A, Seiberl J, Ku¨rbitz C,
  74. Settler U, Plachta-Danielzik S, et al. Quercetin reduces
  75. systolic blood pressure and plasma oxidised low-density
  76. lipoprotein concentrations in overweight subjects with
  77. a high-cardiovascular disease risk phenotype: a doubleblinded,
  78. placebo-controlled cross-over study. Br J Nutr
  79. ; 102: 1065-74.
  80. Pandey KB, Rizvi SI. Protection of protein carbonyl
  81. formation by quercetinin erythrocytes subjected to
  82. oxidative stress. Med Chem Res 2010; 19: 186-92.
  83. Kim JH, Kang MJ, Choi HN, Jeong SM, Lee YM,
  84. Kim JI. Quercetin attenuates fasting and postprandial
  85. hyperglycemia in animal models of diabetes mellitus.
  86. Nutr Res Pract 2011; 5: 107-11.
  87. Ghaffari MA, Mojab S. Influence of flavonolsas in vitro
  88. on low density lipoprotein glycation. Iran Biomed J
  89. ; 11: 185-91.
  90. Bhutada P, Mundhada Y, Bansod K, Bhutada C, Tawari
  91. S, Dixit P, et al. Ameliorative effect of quercetin on
  92. memory dysfunction in streptozotocin-induced diabetic
  93. rats. Neurobiol Learn Mem 2010; 94: 293-302.
  94. Liang W, Luo Z, Ge S, Li M, Du J, Yang M, et al. Oral
  95. administration of quercetin inhibits bone loss in rat
  96. model of diabetic osteopenia. Eur J Pharmacol 2011;
  97. doi:10.1016/j.ejphar.2011.08.014.
  98. Namvaran F, Azarpira N, Rahimi-moghaddam P,
  99. Dabbaghmanesh, MH. Polymorphism of peroxisome
  100. proliferator-activated receptor γ (PPARγ) Pro12Ala in
  101. the Iranian population: Relation with insulin resistance
  102. and response to treatment with pioglitazone in type 2
  103. diabetes. Eur J Pharmacol 2011; 671(1-3): 1-6.
  104. BootsA, Wilms LC, Swennen ELR, Kleinjans JCS, Bast
  105. A, Haenen GRM. In vitro and ex vivo anti-inflammatory
  106. activity of quercetin in healthy volunteers. Nutrition
  107. ; 24: 703-10.
  108. Machha A, Achike FI, Mustafa AM, Mustafa MR.
  109. Quercetin, a flavonoid antioxidant, modulates
  110. endothelium-derived nitric oxide bioavailability in
  111. diabetic rat aortas. Nitric Oxide 2007; 16: 442-7.
  112. Serafini M, DelRio D. Understanding the association
  113. between dietary antioxidants, redox status and disease:
  114. is the Total Antioxidant Capacity the right tool? Redox
  115. Rep 2004; 9(3): 145-52.
  116. Prochazkova D, Boušova I, Wilhelmova N. Antioxidant
  117. and prooxidant properties of flavonoids. Fitoterapia
  118. ; 82: 513-23.
  119. Pfeuffer M, Auinger A, Bley U, Kraus-Stojanowic I,
  120. Laue C, Winkler P, et al. Effect of quercetin on traits
  121. of the metabolic syndrome, endothelial function and
  122. inflammatory parameters in men with different APOE
  123. isoforms. Nutr Metab Cardiovas 2011; doi:10.1016/
  124. j.numecd.2011.08.010.
  125. Rodrigo R, Miranda A, Vergara L. Wine and oxidative
  126. stress: Up-to-date evidence of the effects of moderate
  127. wine consumption on oxidative damage in humans.
  128. Atherosclerosis 2010; 208: 297–304.
  129. Knekt P, Kumpulainen J, Järvinen R, Rissanen H,
  130. Heliövaara M, Reunanen A, et al. Flavonoid intake
  131. and risk of chronic diseases. Am J Clin Nutr 2002;
  132. : 560-8.
  133. Lukačinova A, Mojžiš J, Beňačka R, Keller J, Maguth T, Kurila P, et al. Preventive effects of flavonoids on
  134. alloxan-induced diabetes mellitus in rats. Acta Vet
  135. Brno 2008; 77: 175-82.
  136. Kannappan S, Anuradha CV. Insulin sensitizing actions
  137. of fenugreek seed polyphenols, quercetin & metformin
  138. in a rat model. Indian J Med Res 2009; 129: 401-8.
  139. Jo SH, Ka EH, Lee HS, Apostolidis E, Jang HD,
  140. Kwon YI. Comparison of Antioxidant Potential and
  141. Rat intestinal α-Glucosidases inhibitory Activities
  142. of Quercetin, Rutin, and Isoquercetin. IJARNP 2010;
  143. (4): 52-60.
  144. Lee KH, Park E, Lee HJ, Kim MO, Cha YJ, Kim JM,
  145. et al. Effects of daily quercetin-rich supplementation
  146. on cardiometabolic risks in male smokers. Nutr Res
  147. Pract 2011; 5(1): 28-33.
  148. NuralievI, Avezov GA. Efficacy of quercetin in alloxin
  149. diabetes. Eksp Klin Farmakol 1992; 55: 42-4.