The Effect of Cow’s Milk Versus Calcium Supplement on the Components of Metabolic Syndrome in Overweight or Obese Women

Shiva Faghih¹, PhD; Alireza Abadi², PhD; Mehdi Hedayati³, PhD; Seyed Masoud Kimiagar⁴, PhD

Introduction

According to WHO report, obesity has more than doubled in the world since 1980. In 2008, 1.5 billion adults, 20 years and older, were overweight. Of these, over 200 million men and nearly 300 million women were obese.¹ Obesity is a risk factor for type 2 diabetes, hypertension, dyslipidemia, and coronary heart diseases.² Also, the metabolic syndrome (MetS), a clustering of obesity, impaired glucose metabolism, hypertension, and dyslipidemia,³⁴ is a serious public health problem.⁵ It is assumed that calcium and other components of dairy products may have an effect on energy balance and weight regulation.⁶ In fact, calcium and dairy products have been shown to reduce body weight.⁷⁻⁹ Calcium has also been shown to improve metabolic parameters in subjects with type 2 diabetes.¹⁰⁻¹ⁱ However, the role of dairy products in the prevention of metabolic syndrome is still unclear. The purpose of this study was to evaluate the effect of cow’s milk versus calcium carbonate supplements on the components of metabolic syndrome in overweight or obese women.

Abstract

Background: Obesity and metabolic syndrome are serious public health problems. It is suggested that high calcium diet can improve lipid profile, blood pressure and insulin resistance.

Methods: In this clinical trial, 75 healthy overweight or obese premenopausal women were randomly allocated to one of the following dietary regimens for 8 weeks: 1) a control diet 2) a calcium-supplemented diet containing 800mg/d calcium carbonate 3) a high milk diet containing three servings of low fat milk (all of them providing a 500kcal/day deficit). At baseline and after 8 weeks, waist circumference (WC), blood pressure, serum triglyceride (TG), fasting blood sugar (FBS), and high density lipoprotein cholesterol (HDL-C) were measured.

Results: After 8 weeks, WC, FBS and HDL-C decreased in all groups (P<0.001), but there were no significant reduction in TG and blood pressure. Reduction of WC in the milk group was significantly higher than the controls (P=0.028). Also, reduction of HDL-C in the calcium and milk groups was less than the controls (P=0.023 and P=0.019, respectively). Changes in FBS, TG and blood pressure were not significantly different among the 3 groups.

Conclusion: We found that increasing milk consumption led to more WC reduction. Milk or calcium intake caused less adverse effect on HDL-C, but has no effect on the blood pressure, FBS and TG. So increase in milk or calcium intake can reduce WC among the metabolic syndrome complications.

Keywords: Calcium, Milk, Metabolic Syndrome, Overweight, Lipid Profile

It is noteworthy that the Persian version of this article was published in Iranian Journal of Endocrinology and Metabolism. 2013; 14(5): 430-436.
products inhibit lipogenesis and promote lipolysis via suppression of calcitriol. Moreover, several studies have shown an independent association between higher dairy consumption and a more favorable lipid profile, lower risk of hypertension, insulin resistance, and type 2 diabetes.

Calcium via dairy products consumption may be more potent than calcium supplement. It seems that bioactive compounds in dairy products are responsible for this effect. The effect of calcium intake on body weight, blood pressure, insulin resistance and lipid profile is still a controversial issue. The results of cross-sectional studies are indicative of the negative association between dairy products consumption and the risk of metabolic syndrome. But to the best of our knowledge there is no clinical trial on the effect of calcium or dairy consumption in premenopausal women. So, we decided to compare the effects of low fat cow’s milk, and calcium supplement on components of metabolic syndrome in overweight or obese premenopausal women.

Material and Methods

Study Sample

Seventy five premenopausal overweight or obese women aged 20-50 years volunteered to participate in this randomized clinical trial and 64 completed the study. The study was performed in 2009. The study. Eleven participants dropped out for various reasons, including not consuming calcium supplement and unwillingness to continue participation. Inclusion criteria were as follows: body mass index (BMI) more than 25 kg/m², taking no medications or supplements which might affect metabolism of calcium, vitamin D or weight loss, absence of menopause, stable body weight (body weight change less than 3 kg for the last 2 months), absence of diabetes, hypertension, coronary-artery, thyroid, and kidney diseases. The participants were non-pregnant and non-lactating with no allergy to milk or lactose intolerance. It was also ensured that the participants had not participated in any other studies within the last 6 months of screening. The study was approved by the ethics committee of National Nutrition and Food Technology Research Institute with the code ID of IRCT201304213080N1. Each participant was informed of the possible risks and benefits associated with this study and provided written signed consent.

Study Interventions

The participants were studied for a 2-week period for baseline dietary and physical activity assessment and then randomized to one of the following dietary regimens for 8 weeks: 1) a control diet providing a 500 kcal/day deficit, with 500-600 mg/day dietary calcium; 2) a calcium- supplemented diet identical to the control diet with 800 mg/day of calcium (as calcium carbonate); 3) a milk diet providing a 500 kcal/day deficit and containing three servings (220 ml) of low fat milk (1.5%). The total calcium of milk diet was between 1200-1300 mg/day.

Daily caloric requirements were calculated using the Harris-Benedict equation. After multiplying it by physical activity level, meal schedules were given to each individual based on a 500 kcal/day deficit from estimated caloric requirements. The diets for all groups were designed to provide comparable levels of macronutrients as follows: 55% carbohydrate, 18% protein and 27% fat. At baseline and at two-week intervals, the weight, height, waist circumference, and blood pressure were measured and 24h-dietary records, as well as physical activity records (2 week days and 1 weekend) were taken. Waist circumference was measured on the narrowest area of the waist below the rib cage and above the umbilicus with the use of a non-stretchable tape measure.

At baseline and after 8 weeks, fasting blood samples (10 ml) were obtained in the morning. The plasma was separated and frozen at -80°C for later analysis. Serum Glucose and TG were measured using enzymatic chromatography (Pars azmoon, Tehran, Iran). Serum HDL-C was measured by direct turbidimetry method (Pars azmoon, Tehran, Iran).

Statistical Analysis

Dietary records were analyzed using Nutritionist 4 (N IV). Statistical analyses were performed using SPSS software, version 16. One way ANOVA was used to compare the characteristics of subjects in three groups at baseline, also to compare the mean differences of FBS, HDL-C, TG, blood pressure and waist circumference among 3 groups. We used LSD post hoc test to find the two by two between groups’ differences. P<0.05 was considered significant.

Results

Of the 75 women meeting the general eligibility criteria, 11 dropped out before completing the weight-loss period (5, 3, and 3 persons in control, calcium supplement, and milk groups, respectively).

Baseline characteristics of the participants are shown in Table 1. It is apparent that there were no significant differences between the age, BMI, WC, serum HDL-C, TG, Glucose and energy and calcium intake of the participants in the 3 groups.

Table 2 indicates that there were no differences in the energy, macronutrients, fiber and cholesterol intakes among the 3 groups during the study. Also,
it was shown that the percentages of carbohydrate, protein and fat intake were very close to the recommended amounts of 55%, 18%, and 27%, respectively.

It is shown in Table 3 that after 8 weeks, changes of dependent variables were significant among groups just for WC and HDL-C. LSD post hoc test showed that reduction in WC was more in the milk group compared to the controls (P=0.028). Also, reduction in HDL-C levels of calcium supplement and milk groups were less than the controls (P=0.023 and P=0.019, respectively).

Discussion

Results of this study indicated that among the components of metabolic syndrome, calcium supplement or milk consumption only affected the waist circumference and HDL-C level. We found that milk intake led to more reduction in WC than the controls. Besides, although not statistically significant, reduction in WC of the calcium supplement group was greater than the controls, too. In agreement with our findings, Zemel and colleagues showed that daily consumption of 3 cups of yogurt can cause more reduction in WC than the controls(3.99 cm Vs 0.58 cm). High dietary calcium intake reduces 1,25-vitamin D levels which decreases the calcium influx into the cell; thus, the intracellular levels of the ionic calcium stimulate lipolysis and inhibit lipogenesis in the adipocyte. Milk is rich in bioactive compounds as angiotensin converting enzyme inhibitors that increase lipolysis, too. It is suggested that bioactive peptides and branched chain amino acids content of dairy products are responsible for their more potent effect on WC, compared with calcium supplement. After following limited energy diet, there was a reduction in serum HDL-C of all groups, but comparing the controls, it was less in the calcium and milk groups. Major and colleagues found that after 15 weeks intake of 1200 mg/d calcium plus 400 IU/d vitamin D, there was a tendency for more beneficial changes in HDL-C in the Ca+vitamin D group.

Table 1: Baseline characteristics of the subjects under the study

<table>
<thead>
<tr>
<th>Variables</th>
<th>Control (n=20)</th>
<th>Ca group (n=22)</th>
<th>High milk (n=22)</th>
<th>P*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (year)</td>
<td>38.25±9.49</td>
<td>35.77±8.70</td>
<td>38.27±10.43</td>
<td>0.61</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>30.78±3.13</td>
<td>31.54±4.12</td>
<td>30.01±3.55</td>
<td>0.39</td>
</tr>
<tr>
<td>WC (Cm)</td>
<td>90.57±7.63</td>
<td>90.81±9.79</td>
<td>86.88±8.46</td>
<td>0.09</td>
</tr>
<tr>
<td>FBS (mg/dl)</td>
<td>84.5±7.66</td>
<td>85.22±8.36</td>
<td>83.86±5.75</td>
<td>0.82</td>
</tr>
<tr>
<td>TG (mg/dl)</td>
<td>125.2±48.19</td>
<td>118.90±54.85</td>
<td>122.04±54.22</td>
<td>0.92</td>
</tr>
<tr>
<td>HDL-C (mg/dl)</td>
<td>43.75±5.26</td>
<td>40.95±3.67</td>
<td>42.90±3.86</td>
<td>0.10</td>
</tr>
<tr>
<td>Systolic BP (mmHg)</td>
<td>107.25±9.10</td>
<td>102.50±8.96</td>
<td>104.00±9.11</td>
<td>0.22</td>
</tr>
<tr>
<td>Diastolic BP (mmHg)</td>
<td>67.00±8.64</td>
<td>65.68±7.28</td>
<td>67.75±7.69</td>
<td>0.75</td>
</tr>
<tr>
<td>Energy (kcal/d)</td>
<td>1839.35±169.54</td>
<td>1870.77±201.79</td>
<td>1937.26±177.79</td>
<td>0.25</td>
</tr>
<tr>
<td>Calcium (mg/d)</td>
<td>512.85±172.71</td>
<td>532.29±149.77</td>
<td>484.58±131.07</td>
<td>0.64</td>
</tr>
</tbody>
</table>

All values are mean±standard deviation, *One way ANOVA

Table 2: Intake of energy, macronutrients, calcium, fiber and cholesterol of the subjects during the study period

<table>
<thead>
<tr>
<th>Variables</th>
<th>Control (n=20)</th>
<th>Ca group (n=22)</th>
<th>High milk (n=22)</th>
<th>P*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy (kcal/d)</td>
<td>1221.21±153.73</td>
<td>1239.60±180.09</td>
<td>1297.89±137.83</td>
<td>0.25</td>
</tr>
<tr>
<td>Fat (%)</td>
<td>27.21±3.77</td>
<td>26.45±2.80</td>
<td>27.36±3.25</td>
<td>0.64</td>
</tr>
<tr>
<td>Protein (%)</td>
<td>17.63±1.34</td>
<td>17.40±2.78</td>
<td>17.59±2.21</td>
<td>0.90</td>
</tr>
<tr>
<td>Carbohydrate (%)</td>
<td>54.78±3.58</td>
<td>56.04±2.78</td>
<td>55.04±4.12</td>
<td>0.46</td>
</tr>
<tr>
<td>Cholesterol (mg/dl)</td>
<td>143.12±60.32</td>
<td>138.98±30.24</td>
<td>144.19±41.81</td>
<td>0.92</td>
</tr>
<tr>
<td>Fiber (g/d)</td>
<td>14.34±3.76</td>
<td>14.37±4.11</td>
<td>13.77±2.35</td>
<td>0.80</td>
</tr>
<tr>
<td>Calcium (mg/d)</td>
<td>495.46±163.87</td>
<td>1320.53±219.36</td>
<td>1302.00±107.56</td>
<td><0.001</td>
</tr>
</tbody>
</table>

All values are mean±standard deviation, *One way ANOVA

Table 3: Between groups’ differences of metabolic syndrome components of the subjects under the study

<table>
<thead>
<tr>
<th>Variables</th>
<th>Control</th>
<th>Calcium</th>
<th>High milk</th>
<th>P*</th>
</tr>
</thead>
<tbody>
<tr>
<td>WC (cm)</td>
<td>3.98±0.62*</td>
<td>5.13±0.68</td>
<td>6.32±0.54*</td>
<td>0.036</td>
</tr>
<tr>
<td>SBP (mmHg)</td>
<td>1.00±1.52</td>
<td>-0.68±1.24</td>
<td>0.50±1.53</td>
<td>NS</td>
</tr>
<tr>
<td>DBP (mmHg)</td>
<td>0.25±1.22</td>
<td>1.13±1.27</td>
<td>2.25±1.28</td>
<td>NS</td>
</tr>
<tr>
<td>FBS (mg/dl)</td>
<td>8.50±1.97</td>
<td>8.95±1.21</td>
<td>6.90±1.92</td>
<td>NS</td>
</tr>
<tr>
<td>TG (mg/dl)</td>
<td>3.40±7.01</td>
<td>4.95±7.42</td>
<td>14.81±11.04</td>
<td>NS</td>
</tr>
<tr>
<td>HDL-C (mg/dl)</td>
<td>5.60±1.22*</td>
<td>1.95±0.71*</td>
<td>1.86±0.86b</td>
<td>0.010</td>
</tr>
</tbody>
</table>

All values are mean±standard error, NS: not significant, *Between groups differences (One way ANOVA). The same letters in a row shows significant differences, P<0.05 for all (LSD post hoc test)
consumption led to more WC reduction. Milk or
otherwise healthy persons are the limitations of our
consistent with other studies' results.21, 24, 25
in serum TG reduction among the 3 groups, which is
FBS of 84mg/dl can be a justification for our results.
workers23 are in agreement with the findings of our
fortified milk did not have beneficial effects on HDL-C
of 1 gr/d calcium supplement for 1 year led to more
serum HDL-C increase in Ca group than the control
groups.24 In contrast, Daly and Nowson reported
that consumption of far-reduced calcium-vitamin D
that consumption of far-reduced calcium-vitamin D
reduction following energy limited diets has been shown in
other studies, too. Reducing fat intake and increasing
but it showed no effects on blood pressure, FBS, and
to calcium intake caused less adverse effect on HDL-C,
which showed high calcium intake was related to
less blood pressure, results of clinical trials are not
consistent.21, 25, 26 On the other hand, the results of DASH diet on 500 subjects with normal blood pressure
or mild hypertension showed that the effect of milk
consumption on blood pressure reduction was more
pronounced in hypertensive subjects.31
Related to the effect of calcium intake on FBS, the
results of Thompson and colleagues22 and Major and
coworkers2 are in agreement with the findings of our
study. Pittas and colleagues reported that Ca+vitamin D supplementation could improve insulin resistance
in subjects with FBS>126mg/dl but not in those with
FBS<126mg/dl,28 so it is assumed that having mean
FBS of 84mg/dl can be a justification for our results.
Also, we did not find any significant differences
in serum TG reduction among the 3 groups, which is
consistent with other studies' results.21, 24, 25
Short duration and using overweight or obese
otherwise healthy persons are the limitations of our
study. We guess that using hypertensive, insulin resistant,
hyperlipidemic subjects or patients with MetS would
result in more obvious outcomes. So, it merits further
studies with different participants and longer periods.
In conclusion, we found that increasing milk
consumption led to more WC reduction. Milk or
calcium intake caused less adverse effect on HDL-C,
but it showed no effects on blood pressure, FBS, and
TG. So, increasing milk or calcium intake can reduce
WC among the metabolic syndrome complications.

Acknowledgments

We would like to thank Iran Daru Company for providing us with calcium carbonate capsules.

Conflict of interest: None declared

References

1 Obesity and overweight. Available on line at: http://
www.who.int/mediacentre/factsheets/fs311/en
(accessed on 15 June 2011)
2 Aranceta J, Moreno B, Moya M, and Anadan A.
Prevention of overweight and obesity from a public
3 Park J, Hilmers DC, Mendoza JA, Stuff JE, Liu Y,
Nicklas TA. Prevalence of Metabolic Syndrome and
Obesity in Adolescents Aged 12 to 19 Years:
Comparison between the United States and Korea. J
4 Alkerwi A, Donneau A, Sauvaogeot N, Lair ML,
syndrome in Luxembourg according to the Joint Interim
Statement definition estimated from the ORISCALUX
5 Jover A, Corbella E, Munoz A, Millan J, Pinto X,
Mangas A, et al. Prevalence of Metabolic Syndrome and
its Components in Patients With Acute Coronary
6 Parikh SJ, Yanovski JA, Calcium intake and adiposity.
7 Schrager S. Dietary Calcium Intake and Obesity. J Am
8 Zemel MB. The Role of Dairy Foods in Weight
9 Jacqmain M, Doucet E, Despres JP, Bouchard C,
Tremblay A. Calcium intake, body composition, and
lipoprotein-lipid concentrations in adults. Am J Clin
Nutr 2003; 77: 1448-52.
10 Wang L, JoAnn E, Manson JE, Buring JE, Lee I, Sesso
HD. Dietary Intake of Dairy Products, Calcium, and
Vitamin D and the Risk of Hypertension in Middle-
Aged and Older Women. Hypertension 2008; 51:
1073-9.
11 Pereira MA, Jacobs DR, Van Horn L, Slattery ML,
Kartashov AI and LudwigDS. Dairy Consumption,
Obesity, and the Insulin Resistance Syndrome in Young
Adults : The CARDIA Study. JAMA 2002;
287: 2081-2089.
12 Choi HK, Willett WC, Stampfer MJ, Rimm E, Frank
B. Dairy Consumption and Risk of Type 2 Diabetes
13 Drouillet P, Balkau B, Charles, Vol S, Bedouet M,
Ducimet`ere P, The DESIR Study Group. Calcium
consumption and insulin resistance syndrome
parameters. Data from the Epidemiological Study on
the Insulin Resistance Syndrome (DESIR). Nutr Metab
14 Liu S, Choi HK, Ford E, Song Y, Klevak A, Buring
JE, et al. A Prospective Study of Dairy Intake and the
Risk of Type 2 Diabetes in Women. Diabetes Care

