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 Abstract  
Background: A given amino acid sequence can be encoded 
by a huge number of different nucleic acid sequences. These 
sequences, however, have proved not to be equally useful. The 
choice of sequence can significantly impact the expression of 
an encoded protein. Given the importance of protein-coding 
sequence and promising industrial and medicinal applications 
of Clostridium histolyticum collagenase, this study examined 
the codon optimization of the Col H gene so as to enhance 
collagenase expression in Escherichia coli (E. coli). 
Methods: This is an experimental study in which the CDS of 
Col H gene was optimized according to the codon usage of E. 
coli, using Gene Designer software (DNA 2.0). 
Results: The results revealed that relative frequency of codon 
usage in Col H gene was adapted to the most preferred triplets 
in E. coli in such a way that codon usage bias in E. coli was 
enhanced after codon optimization. The higher level of 
collagenase expression was more likely the result of substituting 
rare codons with optimal codons.
Conclusion: The findings of this study suggest that codon 
optimization provides a theoretical improvement in Col H gene 
expression in E. coli. Nevertheless, experimental research is 
needed to confirm the improvement.
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Introduction

Collagens existing in a large number of cell types are the 
integral component of animal tissues such as the skin, 
tendons, and cartilage as well as the organic constituent 
of the bones, teeth, and cornea. In fact, it accounts for 
about 25 to 33% of the total protein in mammalian 
organs.1 Collagen in the connective tissues of nearly 
all organs is as insoluble fibers. It is embeded in the 
mucopolysaccharides and protein of the extracellular 
matrix and plays a vital role in the strength of tissues.2 
A change in its production or degradation has been 
shown to result in a variety of diseases. In such cases, 
proteolytic enzymes provide a useful clinical way to 
the treatment of collagen-centered disorders.3 On the 

other hand, making use of enzymes as a drug enjoys 
two advantages which differentiate them from all other 
types of drugs.4-6 To start with, enzymes frequently 
bind and act on their substrates with a high affinity. In 
the second place, enzymes are catalytic and transform 
target molecules into certain products. Thus, they are 
more specific and potent drugs than small molecules that 
can accomplish therapeutic biochemistry in the body. 
These features have given rise to the development of 
many enzymatic drugs for a large variety of disorders.5 
A tight triple helical structure that makes up collagen 
causes its resistance to most proteases; all the same, 
collagenases can specifically degrade collagen.6 
Bacterial collagenases, in addition, have been shown 
to display broader substrate specificity than vertebrate 
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collagenases.7 Collagenases derived from Clostridium 
histolyticum, namely Col G and Col H, are a case in point 
since these are capable of easily digesting collagens,8, 

9 no matter what their size and type are.9, 10 Recently, 
making use of Clostridium collagenases has attracted 
a great deal of researchers’ interest as a non-invasive 
therapeutic procedure.3, 11 As such, these collagenases 
have been examined for the treatment of Dupuytren’s 
disease,3, 12, 13 Peyronie’s Disease,14, 15 Herniated Lumbar 
Disk,3, 4, 16 retained placenta,17, 20 wound healing,21, 22 
the debridement of burn,23, 24 and in the preparation of 
pancreatic islet cells for transplantation.25-27 Nowadays, 
culturing C. Histolyticum and subsequent purifying all of 
the produced bacterial proteins is a widely used method 
of producing collagenases for clinical applications.28, 29 
Nevertheless, the isolation and extraction of enzyme from 
natural sources due to the low expression levels and the 
intracellular localization of the enzyme, have technical 
problems and increases the costs of production. For 
commercial success, decreasing the cost of production 
is necessary which, in turn, depends on the expression 
level of the enzyme and the purification costs. As such, 
there has been growing interest in producing enzyme by 
recombinant methods.30 Prokaryotic expression systems, 
especially E. coli, are one of the most common systems 
for the industrial production of proteins of therapeutic 
or commercial applications. E. coli has advantages 
including growth on inexpensive media, rapid biomass 
accumulation, convenient genetic manipulation, and 
simple scale-up.31 Nonetheless, the production of 
heterologous protein in the organism may be decreased 
by codon bias phenomenon, in which proteins of interest 
contain codons that are rarely used in E. coli.32, 33 It has 
revealed that the presence of rare codons results in 
decreasing translation speed and inducing translational 
errors.34, 35 The rarest codons in E. coli include Arginine 
(AGG, AGA, CGG, CGA), GGG), Isoleucine (ATA) 
Leucine (CTA, TTA), Proline (CCC), Serine (TCG, 
TCA, AGT), and Therionine (ACA). In addition to rare 
codons, GC content can affect the expression levels. 
GC-rich mRNAs can contribute to forming powerful 
secondary structures and, especially in bacteria, such a 
powerful structure near ribosome-binding site obstructs 
the translation initiation. On the other hand, GC-poor 
mRNAs cannot fold strongly and frequently carry 
sequence elements limiting expression. For instance, low 
GC content has been seen to restrict the expression of 
Plasmodium falciparum genes in E. coli. Such mRNAs 
seem to be the targets for RNase E cleaving AU-rich 
sequence.34-36 Codon optimization has been considered 
to be a common strategy to improve the efficiency and 
accuracy of translation.37, 38 Codon optimization, indeed, 
is to alter rare codons in target gene so as to adapt them 
to the codon usage of specific expression host. Recently, 
a huge number of studies have reported an increase in 
the expression levels by codon optimization.39, 40 Here, 
we explored codon optimization of Col H gene to express 
in E. coli. 

Methods

Codon Optimization of Col H 
The protein sequence of Col H was taken 

from UniProt database, and 40 amino acids 
of putative signal (MKRKCLSKRLMLAIT 
MATIFTVNSTLPIYAAVDKNNATAA) were 
removed in order to generate a mature enzyme. 
Then, the coding region of mature Col H gene was 
optimized according to the codon usage of E. coli, 
using Gene Designer software (DNA 2.0). This 
software using proprietary algorithms replaces rare 
codons and eliminates problematic mRNA structures 
and repetitive sequences. 

Gene Sequence Analyses 
The sequence analysis of native and optimized Col 

H gene was performed using online software involving 
Rare Codon Analysis Tool and Sequence Analysis 
which are available on websites www.genscript.com 
and www.bioinformatics.org, respectively.

Results 

Codon oOptimization of Col H 
The native gene used tandem rare codons such as 

AGA AGG which have been shown to greatly affect 
heterologous expression in E. coli. These effects 
include ribosome pausing and cotranslational cleavage 
of mRNA, ribosomal frame shifting or amino acid 
misincorporation.32-34 Codon optimization substituted 
such codons and adapted the frequency of codon 
usage to the most preferred triplets in E. coli, so 
that its codon usage bias was enhanced. Moreover, 
the sequence of native (GenBank accession number 
D29981) and codon-optimized genes was aligned, 
indicating that codon optimization did not alter the 
amino acid sequence and that 666 out of 982 codons 
(67.82%) were substituted.

Percentage of Non-optimal and Optimal Codons 
Before and After Codon Optimization 

The native and optimized codon sequences of Col 
H enzyme are compared using Sequence Analysis 
software. The gene coding collagenase contains 2946 
bp which encodes a protein with 982 amino acids 
Before codon optimization, the numbers of rare codon 
GGA and GGG (codons encoding glycine) were 38 
and 6, respectively. On the other hand, the codons 
GGC and GGT that are optimal for glycine were 3 and 
26, respectively. After codon optimization, the rare 
codons reached 0, and the optimal codons GGC and 
GGT increased to 37 and 36, respectively. Moreover, 
the rare codons AGA and AGG (coding arginine) 
that were 23 and 5 fell to zero after optimization. 
In contrast, the codons CGT and CGC which are 
optimal for arginine increased from 2 and 1 to 20 and 
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Table 1: The results of the codon analysis of Collagenase H gene before and after optimization 
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11, respectively, after optimization. Additionally, the 
number of rare codons for leucine, i.e. TTA and CTA, 
decreased from 42 and 4 to zero. On the contrary, 
codon optimization raised the optimal codon CTG 
to 65. Furthermore, the codons AGT and TCA that 
are rare for serine diminished to zero; in contrast, 
increase in the numbers in the optimal codons TCT, 
TCC, and AGC emerged from codon optimization. 
In addition, after codon optimization, the rare codon 
ACA encoding threonine declined from 23 to 0, and 
the optimal codon ACC increased from 4 to 40. As 
far as isoleucine amino acid is concerned, the rare 
codon ATA reduced from 41 to 0 and the optimal 
codons ATC and ATT rose to 35 and 23, respectively. 
As for proline, the rare codon CCC decreased from 
1 to 0, and optimal codon CCG increased from 1 to 
33. As to other amino acids, it has also been shown 
that codons are biased towards more frequent codons 
via codon optimization. As an example, less frequent 
codon AAT that encode asparagine reduced from 
57 to 10;on the contrary, more frequent codon AAC 
increased from 12 to 59 (Table 1).

Codon Adaption Index 
Codon Adaption Index (CAI) assesses the extent 

of bias in favor of codons which are involved in highly 
expressed genes. The levels of protein expression 

and CAI are known to be correlated. A CAI of >0.8 
is regarded to be optimum for expression in the 
expression host of interest. As shown in Figure 1, 
the CAI value for original gene was 0.62; however, 
codon optimization increased the CAI of the coding 
sequence to 0.84 that is ideal for expression in E. coli.

Frequency of Optimal Codon 
The simplest method for measuring species-

specific codon usage bias is the frequency of optimal 
codons (Fop):

Where Xop and Xnon are the number of optimal 
and non-optimal codons in a gene, respectively. 
Codons excluded from the calculation contain stop 
codons and codons for tryptophan and methionine. 
Optimal codons for E. coli were originally determined 
based on the availability of tRNA and the nature of 
the codon-anticodon interplay. These codons are 
thought to be translationally optimal and are more 
frequently involved in genes expressed highly than 
lowly expressed ones.41 Non-optimal codon content is 
currently known to limit the expression of heterologous 
proteins owing to restricting available cognate tRNAs 
in the expression host.42 As can be seen in Figure 2, 

Figure 2: The percentage distribution of codons on the basis of their qualification. The value of 100 is assigned to the codon with the highest usage 
frequency for a specific amino acid in the expression organism of interest. The values of < 30 are assigned to codons which hinder the expression 
efficiency and accuracy. (A) And (B) illustrate the percentage of Collagenase H codons before and after codon optimization, respectively

Figure 1: The distribution of codon usage frequency along the coding region of Collagenase H. The distribution of codon usage frequency 
along the coding region of Collagenase H. (A) and (B) depict the coding region of Col H before and after codon optimization, respectively
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44% of Col H codons showed the value of 100 before 
codon optimization, while they increased to 64% with 
codon optimization. Additionally, the percentage of 
rare codons (codons with values lower than 30) was 12, 
which decreased to 0 following codon optimization. 

GC Content Adjustment
Original gene encoding Col H showed a GC low 

content, resulting in low expression. However, codon 
optimization increased it from 30.99% to 47.46%.

Discussion

The codon contains three nucleotides that encode a 
specific amino acid in protein synthesis. 64 codons 
make up the structure of proteins, but only 20 amino 
acids lead to the multiplicity of the genetic code. For 
example, leucine is one of the amino acids encoded 
by six different codons, including UUG, CUC, CUA, 
CUG, UUA, and CUU, while the amino acid cysteine is 
encoded by only two codons, UGU and UGC. In total, 2 
amino acids are encoded from 20 types of amino acids 
with 1 codon, 9 amino acids with 2 codons, 1 amino 
acid with 3 codons, 5 amino acids with 4 codons, and 
finally 3 amino acids with 6 codons, which generally 
lead to 61 basic codons in nature. The TAA, TAG, and 
TGA codons are stop codons and are involved in protein 
termination. Degradation of codon leads to many protein 
encoding methods; in nature, not all possible encodings 
and outcome sequences are seen equally. However, in a 
particular organism some similar codons can be used 
more than others to encode a special amino acid. This 
is called codon bias or codon usage bias.43

Two measures are available for quantifying the 
efficiency of translation. The first type evaluates the 
codon bias of genes and CAI is a good case in this 
regard. Another kind is based on the availability of 
tRNA at each codon along the gene and Fop is a good 
case in this regard. A privileged status of the Fop over 
the CAI is that it reduces the need to identify a set of 
highly expressed genes as a reference. On the contrary, 
it only needs the recognition of all tRNA genes in the 
genome and their classification in accordance with 
their anti-codon.43 Here, the gene designer stand-
alone software applied to optimize codons considers 
both methods. Furthermore, GC content in the Col 
H gene was balanced using the software. As such, 
better results are expected to be obtained using the 
software, as reported elsewhere.44, 45 The findings from 
this study suggest that codon optimization provides a 
theoretical improvement in Col H gene expression in 
E. coli. However, experimental research is needed to 
confirm the improvement. This is because although 
codon bias greatly impacts gene expression, it is 
not the only contributing factor. The selection of 
expression vectors and transcriptional promoters is 
also imperative.46 In addition, a sequence motif in the 

vicinity of the initiation AUG and mRNA stability at 
the 5 t́erminus were shown to play a role in the gene 
expression. The competence of heterologous enzyme 
and protein production in E. coli can be reduced by 
biased codon usage. Commonly used approaches to 
overcome this problem include targeted mutagenesis 
to remove rare codons or add rare codon tRNAs to 
specific cell lines. Recently, advances in cost-effective 
synthetic gene production technology have made 
it a viable option.45 Nikola et al. have shown that 
expression of the natural genes in assemblage with 
rare codon tRNAs imitated the behavior of artificial 
genes in the native strain.46 The tendency is that the 
heterologous gene expression of some enzyme and 
proteins in bacterial host can be modified by fixing 
codon preference, However, this effect can mostly be 
amplified by the introduction of rare codon tRNAs 
into the bacterial host cell.47 A 2020 study on codon 
usage and phenotypic divergence of SARS-CoV-2 
genes has shown that the higher divergence observed 
for the last three genes could be a significant barrier 
to the development of antiviral drugs against SARS-
CoV-2.48 There are multiple studies of developed 
heterologous gene expression that were partially 
or completely replaced with synthetic DNA.49, 50 In 
rotation, genes expression including rare codons can 
be delivered by co-expressing rare related tRNA 
genes51 plasmid vectors encoding several tRNA genes 
are attainable commercially.52

Conclusion

Recombinant collagenase production has many 
applications in medicine, pharmacy, food industry, and 
health. Researchers use different expression vectors to 
express the genes. The codons need to be optimized to 
increase the yield of the protein produced. The results 
of this study are useful for companies and researchers 
producing recombinant proteins.
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