

The Association of Demographic Characteristics, Musculoskeletal Disorders and Depression with Physical Inactivity among Bus Drivers: Using Path Analysis

Fatemeh Abbasi¹, MSc;
Naser Hasheminejad¹, PhD;
Faezeh Makki², MSc; Saeideh
Hajimaghsoodi³, PhD

Abstract

Background: Bus drivers are vulnerable due to prolonged sitting. A sedentary lifestyle can cause many health problems for them. This study was performed with the aim of investigating sedentary behaviour and its relationship with musculoskeletal disorders (MSDs) and depression among bus drivers.

Methods: This is a descriptive-analytical cross-sectional study on 300 professional drivers selected via available sampling method. Data were collected through Demographic Questionnaire, International Physical Activity Questionnaire, Nordic Musculoskeletal Questionnaire (NMQ), and Beck Anxiety Inventory (BAI). Data analysis was performed using SPSS version 25 software, and path analysis was conducted using AMOS version 18.

Results: The findings showed that 86.7% of the participants had very little physical activity. Most reported musculoskeletal discomfort in lower back (77.3%), neck (77%), and back (60.7%). 70.3% of drivers did not show depression or had mild depression. Path analysis showed that age ($P=0.477$), education ($P=0.416$), and marital status ($P=0.271$) did not affect sedentary behaviours. A two-way relationship existed between pain and physical activity ($P=0.001$). In the group with depression, low mobility existed, but no significant relationship was found between depression and inactivity ($P=0.948$).

Conclusion: The results indicated that inactivity among bus drivers was almost high and significantly related to the prevalence of MSDs. While inactivity was not significantly related to depression, the rate of depression was higher in the inactive group. It is recommended that implement intervention programs, such as educational initiatives, should be held to increase physical activity and alter the lifestyle of these individuals. Increasing physical activity may reduce the prevalence of MSDs in this occupational group.

¹Department of Occupational Health Engineering and Safety at Work, School of Public Health, Kerman University of Medical Sciences, Kerman, Iran

²Health in Disasters and Emergencies Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran

³Modeling in Health Research Center, Institute Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran

Correspondence:

Naser Hasheminejad, PhD;
School of Public Health, Kerman University of Medical Sciences, P.O. Box: 7616913-555, Kerman, Iran
Tel: +98 34 31325057

Email: naserhasheminejad@gmail.com

Received: 29 October 2025

Revised: 25 November 2025

Accepted: 30 December 2025

Please cite this article as: Abbasi F, Hasheminejad N, Makki F, Hajimaghsoodi S. The Association of Demographic Characteristics, Musculoskeletal Disorders and Depression with Physical Inactivity among Bus Drivers: Using Path Analysis. *J Health Sci Surveillance Sys.* 2026;14(1):71-79. doi: 10.30476/jhsss.2024.103723.1958.

Keywords: Ergonomics, Sedentary behaviours, Bus driver, Musculoskeletal disorders, Physical activity

Introduction

Physical inactivity or lack of regular physical activity is one of the important risk factors for global mortality.^{1,2} Detrimental associations have been observed between prolonged periods of inactivity and sedentary outcomes. It is estimated that physical inactivity cause about 21-25% breast and colon cancer, 27% diabetes, and about 30% ischemic heart diseases.³ Sedentary behaviour is any behaviour in the state of wakefulness and alertness, which is characterized by an energy consumption of 1.5 metabolic equivalents (METs) in a sitting or lying position.⁴

Sedentary behaviour may not be considered as a “true” high-priority risk factor among the bus drivers.⁵ However, this is one of the sedentary occupations, and most drivers of public vehicles such as buses work in a sitting posture, and the nature of their job is such that their physical activity is very limited. In addition, due to the existence of other occupational risk factors, such as being in static work postures for more than the recommended time, vibration of the whole body, occupational stress, and mental fatigue, they are more susceptible to the consequences of inactivity. Sedentary behaviours, including prolonged sitting, which is prevalent in sedentary jobs, are associated with an increased risk of cardiovascular diseases (CVD), cardiovascular mortality (CVM), diabetes, and some cancers. The consequence of these diseases is disability and the treatment costs are also high. However, limited research is available on the prevalence of sedentary behaviour and its association with health variables among bus drivers.

Different parts of the body, such as the back, neck, arms, legs, and wrists, are susceptible to musculoskeletal disorders due to long-term exposure to inactivity and sometimes in poor posture.⁶⁻⁸ Many studies have shown the connection and causal relationship between physical inactivity, musculoskeletal complaints, and mental disorders such as stress, depression and anxiety.⁹⁻¹¹ Rajguru et al. demonstrated that the risk factors of cardiovascular diseases among bus drivers have a relatively high prevalence (93%). Also, with increasing driving time and decreasing physical activity, the chance ratio of metabolic syndrome increases, which is a risk factor for cardiovascular diseases.¹² Pradeepkumar et al. demonstrated that the prevalence of MSDs among bus drivers was relatively high (55.8%) and was significantly related to work factors and lifestyle/health.¹³ In another review study, it was reported that among adults, a sedentary lifestyle was a significant risk factor for LBP,^{2, 11} and prolonged sitting time and driving time were recognized as important risk factors for MSDs among the studied population.¹⁴⁻¹⁶ Also, since the current study was conducted during

the outbreak of the COVID-19 virus, it is likely that this issue has had a negative effect on the reduction of physical activity of people.^{9, 17}

Health promotion efforts in the bus driver population have mainly focused on exercise or diet-based interventions. However, participation in health promotion programs is typically underreported, which raises more concerns about the consequences of inactivity. Understanding health risks plays an important role in motivating health behaviour change.¹⁸ Increasing our understanding of lifestyle behaviours, particularly sedentary behaviours and physical activity, will help develop interventions which aimed at improving these behaviours in this occupational group.^{19, 20} Hence, before designing effective strategies and adopting preventive strategies to improve sedentary behaviour, it is necessary to find a better insight about people related to physical activity among bus drivers. Therefore, this study was conducted to investigate the sitting behaviour of bus drivers and the effective factors.

Methods

Participants

This is a cross-sectional descriptive-analytical study. The statistical population was all the professional drivers of Kerman city (located in the southeast of Iran) who referred to the occupational medicine centre under the supervision of the Health Vice-Chancellor of Kerman University of Medical Sciences and received their health card. The research sample was selected using the available sampling method among the examined professional drivers who met the entry criteria. The inclusion criteria included being over 22 years old, being a bus driver, not having a physical disability or disability, having physical limitations due to illness, and not having cardiovascular diseases, diabetes, or congenital hypertension. Exclusion criteria of the study included drivers who had a second job. In the present study, all the participants signed the informed consent form before entering the study and voluntarily participated in the study. This study was approved by the Ethics Committee of Kerman University of Medical Sciences (ethics code IR.KMU.REC.1401.309).

Data Collection Tools

In this study, data were collected through three questionnaires as follows:

- Demographic questionnaire

In this questionnaire, there were questions about age, education level, history of diabetes, and non-congenital cardiovascular disease or use of antidepressants in the last 6 months.

- International Physical Activity Questionnaire (IPAQ)

The International Physical Activity Questionnaire (IPAQ) is used in the world to measure the level of physical activity and includes questions about physical activity related to work, commuting, housework, and free time during the last 7 days of the individual.²¹ In this study, the following criterion was used to classify people's physical activity:

- Vigorous physical activity: 7 days a week or more days of the week, any combination of light and moderate activity, walking, totalling at least 3000 MET-minutes per week

- Moderate physical activity: 5 or more days per week of a combination of walking, moderate or light activity for at least 600 MET-minutes per week.

- Light physical activity: When the person does not report any activity or the reported physical activities do not meet the criteria of light or moderate physical activity. The validity of the questionnaire was confirmed in Farahani's study, and its reliability was reported as 0.83.²²

- Beck Anxiety Inventory (BAI):

The Beck Anxiety Inventory (BAI) was designed by Beck and Stein in 1996.²³ This questionnaire is a 21-item scale where each item has four options that are graded from 0 to 3, and the subject scores the severity of each symptom using a four-level scale from the lowest degree to the most severe degree. The total score of this questionnaire ranges from zero to 63, and the cut-off point of this test is 18. The validity and reliability of the Persian version of the questionnaire have been proven.²⁴

- Nordic musculoskeletal questionnaire (NMQ):

This questionnaire is used to collect data about the prevalence of MSDs in different parts of the body. It is one of the most widely used questionnaires for determining the signs and symptoms of musculoskeletal disorders, which was presented and developed in the Occupational Health Institute of the Scandinavian countries by Kuorinka et al. in 1987 to determine the prevalence of work-related MSDs.²⁵ The original version of this questionnaire has been translated and modified into Persian with fully proven validity and reliability.²⁶

Data Analysis

IBM SPSS for Windows, version 22.0 (IBM Company, Armonk, NY, USA) was used to analyze the research data (prevalence, percentage, mean, and standard deviation). Path analysis method was used

to compare demographic variables and sedentary outcomes. This is a method for testing models that can be used to obtain more complex and realistic models than multiple regression with a single dependent variable. AMOS version 18 was used for path analysis.

Results

In this study, 300 drivers were enrolled in the study. After collecting the data using descriptive statistics, which include mean, standard deviation, frequency, and percentage, the sample has been described in the investigated variables. Average age, body mass index, and number of working hours per day were 43.14 ± 9.45 , 27.07 ± 3.97 , and 9.2 ± 2.45 , respectively. In terms of education, 238 subjects (79.3%) had a diploma, and 62 (20.7%) had a university degree. 61 participants (20.3%) were single, and 239 (79.7%) were married. 101 subjects (33.7%) had heart disease, and 88 (29.3%) had diabetes. The results showed that 260 participants (86.7%) had moderate and weak activity, and 40 (13.3%) had strong activity. 211 subjects (70.3%) did not have depression or had mild depression. The results of the Nordic musculoskeletal questionnaire (NMQ) are also shown in Table 1.

Table 1: Nordic questionnaire results

Prevalence of MSDs (n (%))	
Neck	231 (77)
Shoulders	119 (739)
Elbows	64 (21.3)
Wrists/Hands	104 (34.7)
Upper Back	182 (60.7)
Low Back	232 (77.3)
Knees	133 (44.3)
Ankles/Feet	142 (47.3)
Thighs	112 (37.3)

Statistical Analysis

The path analysis model was used in the present research. Path analysis is one of the multivariate methods that examines the direct and indirect effects of independent variables on the dependent variable. In this regard, the causal relationship diagram is drawn between the independent variables and the dependent variable, in which the relationships and direct and indirect effects of the variables are determined, which is actually a theoretical research model. The results of fitting the proposed model with the data: GFI=0.986 / AGFI=0.921 / CFI=0.969 / RMSEA=0.069 / CMIN/ DF=2.429

It shows that the model has a good fit. Therefore, direct and indirect effects can be calculated and checked.

In the model, the IPAQ questionnaire score and the number of musculoskeletal disorders in the last week and 12 months have been used.

Table 2: The results of the variable relations model

Relationship between variable		Estimate	Standardized estimate	S.E.	P value	
Working Hours	<---	Marital status	-0.951	-0.156	0.390	0.015
Working Hours	<---	Education Level	1.269	0.210	0.379	<0.001
Working Hours	<---	Age(years)	-0.038	-0.146	0.018	0.037
Depression	<---	Age(years)	0.019	0.043	0.026	0.461
BMI	<---	Age(years)	0.135	0.321	0.027	<0.001
IPAQ	<---	Marital status	-289.347	-0.111	263.083	0.271
IPAQ	<---	Education Level	-192.391	-0.074	236.631	0.416
IPAQ	<---	Age(years)	-29.983	-0.269	42.150	0.477
IPAQ	<---	Working Hours	-4.261	-0.010	54.669	0.938
BMI	<---	Working Hours	0.213	0.132	0.119	0.073
Depression	<---	Working Hours	0.171	0.098	0.102	0.093
Pain in the last 12 months	<---	Age(years)	0.013	0.082	0.009	0.142
Pain in the last 12 months	<---	BMI	-0.051	-0.131	0.022	0.018
Pain in the last 12 months	<---	IPAQ	-0.001	-0.433	0.000	<0.001
Pain in the last 12 months	<---	Working Hours	-0.005	-0.007	0.034	0.89
Pain in the last 7 days	<---	pain.12	0.415	0.494	0.046	<0.001
Pain in the last 7 days	<---	BMI	-0.018	-0.054	0.018	0.316
Pain in the last 7 days	<---	Age(years)	0.001	0.008	0.007	0.881
Pain in the last 7 days	<---	Depression	0.007	0.024	0.015	0.639
Pain in the last 7 days	<---	Working Hours	-0.016	-0.031	0.027	0.546
Pain in the last 7 days	<---	IPAQ	0.000	-0.014	0.000	0.798
IPAQ	<---	BMI	170.113	0.642	277.096	0.539
BMI	<---	IPAQ	-0.003	-0.680	0.003	0.364
IPAQ	<---	Depression	-2.410	-0.010	37.231	0.948
Depression	<---	IPAQ	0.000	-0.114	0.000	0.338

BMI: Body Mass Index; IPAQ: International Physical Activity Questionnaire; pain.12: Pain in the last 12 months; pain.7: Pain in the last 7 day

Direct Effects of the Variables on Each Other

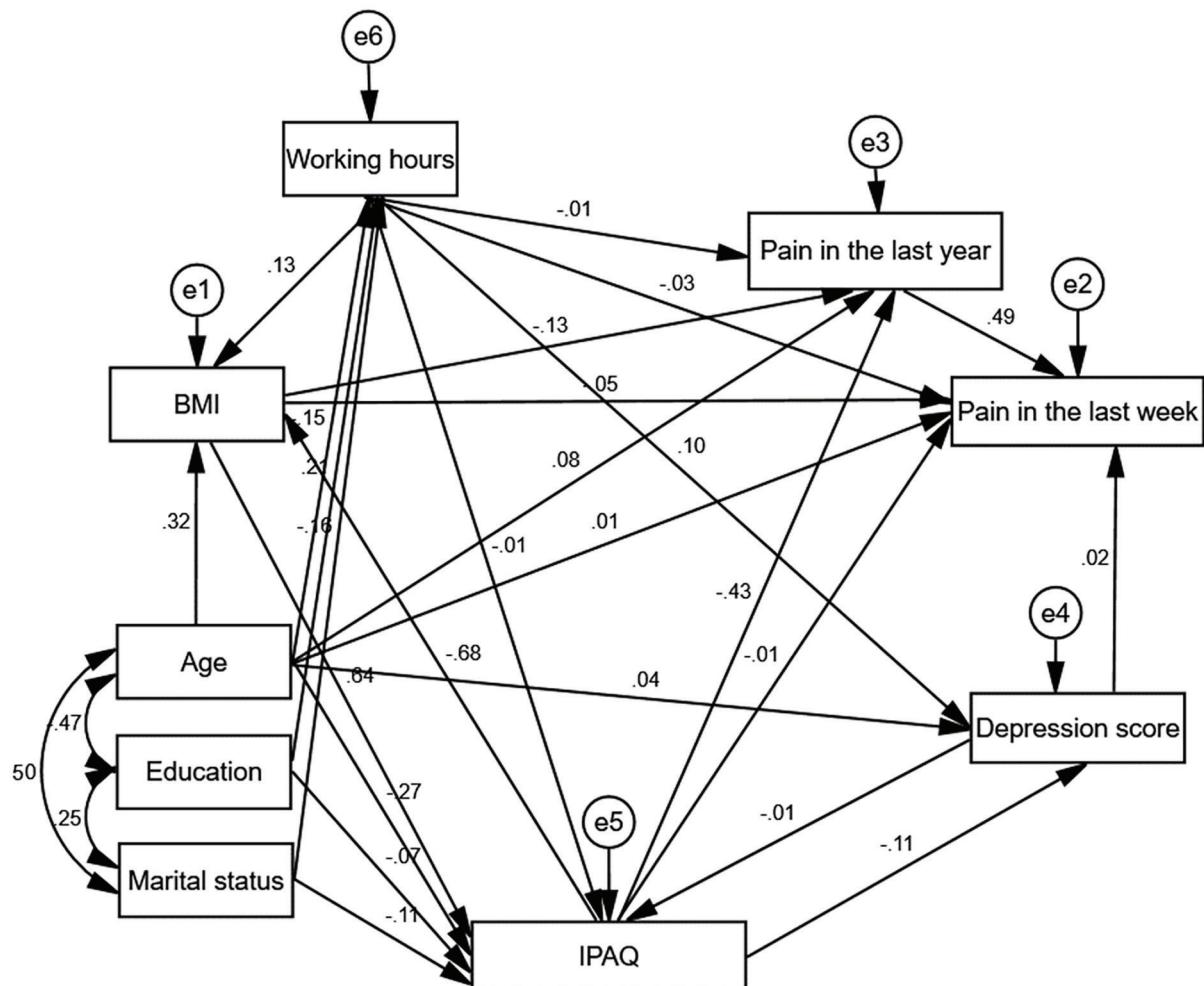
The results of the model showed that pain in the last 12 months ($P<0.001$) had a greater effect on the amount of physical activity (IPAQ). Body mass index ($P=0.018$) was also an effective factor on pain in the last 12 months. Also, it was revealed that age was effective on body mass index and daily working hours. Marital status and level of education were also effective on daily working hours (Table 2).

Indirect Effects of the Variables on Each Other

Body mass index had an indirect effect on pain in the last 7 days ($P=0.001$), pain in the last 12 months ($P=0.008$), and the level of physical activity ($P=0.049$). Also, pain in the last 12 months had an indirect effect on pain in the last 7 days ($P=0.025$).

General Effects

Education status ($P=0.004$), marriage status ($P=0.014$), and age ($P=0.021$) generally affected the number of working hours. Based on the standard coefficients given in Table 1, the education status variable is a more effective factor. Age ($P<0.001$) and level of physical activity ($P<0.001$) were effective on body mass index, and the effect of physical activity was greater due to its larger standard coefficient. The amount of physical activity ($P=0.009$) and body mass index ($P=0.001$) were effective on the pain in the last 12 months; the effect of the amount of physical activity was greater. Body mass index ($P=0.002$) and the


presence of pain in the last 12 months ($P<0.001$) were effective on the presence of pain in the last 7 days, and pain in the last 12 months was a more effective factor. No significant relationship was observed between depression and any of the variables. The full description of the relationships between the variables are displayed in Figure 1.

Discussion

The results showed that the majority of the studied driver population (86.7%) had moderate and poor activity. The highest prevalence of musculoskeletal discomfort was related to the lower back (77.3%), neck (77%), and back (60.7%). 211 subjects (70.3%) were not depressed or had mild depression.

Age ($P=0.477$), education ($P=0.416$), and marital status ($P=0.271$) did not affect sedentary behaviors. Body mass index was also a factor related to the presence of pain in the last 12 months. There was a bidirectional relationship between pain and physical activity. There was no significant relationship between depression and any of the variables.

Mbakwem et al. reported a 50.9% lack of physical activity among the population of bus drivers.²⁷ In another study in the population of bus drivers, 75.2% of the participants were physically inactive, while 24.9% were involved in regular exercise.²⁸

Figure 1: The final path model illustrates direct and indirect effects and causal paths linking variables with inactivity. BMI: Body mass index; IPAQ: International Physical Activity Questionnaire

Ragland et al. showed that inactivity was a health risk for drivers, and only 20 to 40% of the drivers followed the recommendations related to physical activity.²⁹ Mohsen and Hakim showed that most of the bus drivers did not do any regular physical activity.³⁰ The results of the level of inactivity in the present study are reported to be slightly higher than some previous studies, but it is not much different from some studies. In Tamrin et al.'s study on bus drivers, the overall prevalence of MSDs was 81.8%, and the highest prevalence of MSDs was reported in the lower back (58.5%) compared to other body parts.^{6,31} Another study reported that about 55.8% of the bus drivers had experienced work-related musculoskeletal disorders (WMSDs).¹³ In a study among bus drivers, the prevalence of MSDs in the lower limbs was reported as 51.2%.³² The results of these studies are almost consistent with the present study. In a study, the prevalence of depression among bus drivers was reported as 9.7%.³³ In another study, it was shown that common mental disorders, such as alcohol abuse, major depression, anxiety symptoms, and burnout syndrome in public transport drivers, had a higher rate than in the general population.³⁴ The results of another study showed that bus drivers

were significantly more extroverted, psychotic, and neurotic than the general population.³⁵ The prevalence of depression in the present study was lower than in the studies. Douma et al. reported that prolonged sitting was effective as an ergonomic risk factor in the occurrence of back pain among police drivers.³⁶ Lee et al. showed that MSDs had a strong relationship with insufficient physical activity.^{37, 38} Szeto et al. also stated that prolonged sitting is associated with musculoskeletal discomfort.³⁹ In a review study, it was shown that sitting at work significantly increased the chance of lower back pain (LBP).⁴⁰⁻⁴²

The results of the present study showed that there was no relationship between mental disorders and inactivity. In their study, Uddin et al. showed that insufficient physical activity was associated with high psychological distress in young adults.^{43, 44} Many studies have shown the relationship and causal relationship between physical inactivity of musculoskeletal complaints and mental disorders such as stress, depression, and anxiety.⁴⁵⁻⁴⁷ Although inactivity was not related to mental disorders (depression), the prevalence of depression was higher

in the group with more inactivity. In their study, Venkata et al. did not observe a relationship between depressive symptoms and the level of physical activity measured.⁴⁸ Also, O'Connor et al. did not find convincing evidence to show that exercise is effective in preventing or treating depression disorders.⁴⁹ In another study, increasing physical activity improved VO₂max in sedentary people by 12.6% but did not lead to improvements in the profile of mood states (POMS) or general well-being (GWB) scores more than the control group.⁵⁰ Kroeders et al. also showed that while depression symptoms were not related to physical activity, patients with anxiety symptoms spent most of the day lying down.⁵¹

The present study showed that inactivity was related to MSDs. This can be due to long-term maintenance of a posture. According to ergonomic recommendations, no body position should be maintained continuously because the lack of movement and stability in itself is a possible cause of musculoskeletal disorders. Drivers face the risk factors of musculoskeletal disorders in these areas due to the long-term maintenance of a fixed working position and static pressure on the neck and back muscles. Prolonged sitting increases the risk of back pain and sarcopenia.^{52, 53} Improper sitting can play a role in increasing the stress in the disc⁵⁴ and weakness of the back muscles.⁵⁵ The benefits of physical activity include reducing the pressure on the intervertebral disc, increasing blood circulation, and reducing lactic acid in the muscles.⁵⁶ In a recent study, no significant relationship was observed between inactivity and depression. This lack of relationship can probably be because the depression score of the participants was low, and the severity of depression was not high. Also, the number of drivers who had depression should be more to be able to talk with more certainty about the relationship or lack of relationship between depression and inactivity. It is suggested that the interventional methods in the group of drivers who have depression and the control group should be performed to investigate this relationship.

According to the results of the present study, it is suggested that more studies should be conducted in this field to reduce the costs caused by accidents and treatment of disorders with training programs and ergonomic interventions,⁵⁷ reduce disorders, and increase the health of people working in this area.

Conclusion

The results of this study showed that the majority of bus drivers participating in the study had very little mobility. The highest prevalence of musculoskeletal discomfort was related to the lower back, neck, and upper back. Age, education, and marital status did not affect sedentary behaviours. There is a two-way relationship between

pain and the level of physical activity. In the group with depression, the prevalence of inactivity was high, but no significant relationship was found between depression and inactivity.

It is suggested that organize educational programs should be designed to increase awareness and make changes in the lifestyle of these people to reduce the prevalence of chronic diseases and musculoskeletal disorders.

Authors' Contribution

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by F.A., N.H., F.M., and S.H. The first draft of the manuscript was written by F.A., and it was reviewed and edited by N.H. All authors read and approved the final manuscript.

Acknowledgments

This article was taken from a thesis authored by Fatemeh Abbasi, an MSc student in Ergonomics, and was financially supported by Kerman University of Medical Sciences through grant No. IR.KMU.REC.1401.309. Additionally, the authors express their gratitude to all the individuals who participated in this research.

Conflicts of Interest

The authors declare no conflict of interest.

References

- 1 Yang L, Cao C, Kantor ED, Nguyen LH, Zheng X, Park Y, et al. Trends in sedentary behavior among the US population, 2001-2016. *JAMA*. 2019;321(16):1587-97. doi: 10.1001/jama.2019.3636. PubMed PMID: 31012934.
- 2 Tahernejad S, Farahi-Ashtiani I, Veisani Y, Ghaffari S, Sahebi A, Makki F. A systematic review and meta-analysis of musculoskeletal disorders among firefighters. *J Safety Res.* 2023; 85:418-431. doi: 10.1016/j.jsr.2023.01.009. PubMed PMID: 37330894.
- 3 Katzmarzyk PT, Powell KE, Jakicic JM, Troiano RP, Piercy K, Tennant B, et al. Sedentary behavior and health: update from the 2018 physical activity guidelines advisory committee. *Med Sci Sports Exerc.* 2019;51(6):1227-1241. doi: 10.1249/MSS.0000000000001935. PubMed PMID: 31095080.
- 4 González K, Fuentes J, Márquez JL. Physical inactivity, sedentary behavior and chronic diseases. *Korean J Fam Med.* 2017;38(3):111-115. doi: 10.4082/kjfm.2017.38.3.111. PubMed PMID: 28572885; PubMed Central PMCID: PMC5451443.
- 5 Diaz KM, Howard VJ, Hutto B, Colabianchi N, Vena JE, Safford MM, et al. Patterns of sedentary behavior and mortality in US middle-aged and older adults: a national cohort study. *Ann Intern Med.* 2017;167(7):465-475.

doi: 10.7326/M17-0212. PubMed PMID: 28892811; PubMed Central PMCID: PMC5705630.

- 6 Hasheminejad N, Amirmahani M, Tahernejad S. Biomechanical evaluation of midwifery tasks and its relationship with the prevalence of musculoskeletal disorders. *Helijon*. 2023;9(9):e20219. doi: 10.1016/j.helijon.2023.e20219. PubMed PMID: 37809704; PubMed Central PMCID: PMC10559467.
- 7 Tahernejad S, Razeghi M, Abdoli-Eramaki M, Parsaei H, Seif M, Choobineh A. Recommended maximum holding time of common static sitting postures of office workers. *Int J Occup Saf Ergon*. 2023;29(2):847-854. doi: 10.1080/10803548.2022.2092715. PubMed PMID: 35730481.
- 8 Tahernejad S, Choobineh A, Razeghi M, Abdoli-Eramaki M, Parsaei H, Daneshmandi H, et al. Investigation of office workers' sitting behaviors in an ergonomically adjusted workstation. *Int J Occup Saf Ergon*. 2022;28(4):2346-2354. doi: 10.1080/10803548.2021.1992953. PubMed PMID: 34634933.
- 9 Amirmahani M, Hasheminejad N, Tahernejad S, Nik HRT. Evaluation of work ability index and its association with job stress and musculoskeletal disorders among midwives during the Covid-19 pandemic. *Med Lav*. 2022;113(4):e2022046. PubMed PMID: 36472502; PubMed Central PMCID: PMC9747903.
- 10 Tahernejad S, Ghaffari S, Farahmandnia H, Farahi-Ashtiani I, Sahebi A, Tahernejad A. Sleep disorders among healthcare workers during the COVID-19 pandemic: An umbrella review and meta-analysis. *Nurs Pract Today*. 2024;11(1):7-25. doi: 10.18502/npt.v1i1.14987.
- 11 Hasheminejad N, Choobineh A, Mostafavi R, Tahernejad S, Rostami M. Prevalence of musculoskeletal disorders, ergonomics risk assessment and implementation of participatory ergonomics program for pistachio farm workers. *Med Lav*. 2021;112(4):292-305. doi: 10.23749/mdl.v112i4.11618. PubMed PMID: 34446684; PubMed Central PMCID: PMC8393272.
- 12 Rajguru V, Patil MR. A Study to Evaluate Cardiorespiratory Fitness and Prediction of Future Risk of Coronary Artery Disease in Public Transport Bus Drivers of Mumbai and Navi Mumbai. [Journal information and identifiers not available in standard databases].
- 13 Pradeepkumar H, Sakthivel G, Shankar S. Prevalence of work related musculoskeletal disorders among occupational bus drivers of Karnataka, South India. *Work*. 2020;66(1):73-84. doi: 10.3233/WOR-203153. PubMed PMID: 32508343.
- 14 Omura JD, Whitfield GP, Chen TJ, Hyde ET, Ussery EN, Watson KB, et al. Surveillance of physical activity and sedentary behavior among youth and adults in the United States: History and opportunities. *J Phys Act Health*. 2021;18(S1):S6-S24. doi: 10.1123/jpah.2021-0380. PubMed PMID: 34723670; PubMed Central PMCID: PMC8564251.
- 15 Zare A, Jahangiri M, Seif M, Choobineh A, Tahernejad S. Hand anthropometric survey of Iranian healthcare workers. *Hum Factors Ergon Manuf*. 2023;33(4):338-354. doi: 10.1002/hfm.20992.
- 16 Sharif S, Hasheminejad N, Sharifi H, Tahernejad S, Mohammadian M. Occupational Fatigue and Its Relationship with Musculoskeletal Disorders and Heat Stress among the Workers of Summer Crops in Southeast Iran in 2021. *Indian J Occup Environ Med*. 2024;28(2):100-105. doi: 10.4103/ijjem.ijjem_282_22. PubMed PMID: 38911021; PubMed Central PMCID: PMC11192413.
- 17 Sahebi A, Hasheminejad N, Shohani M, Yousefi A, Tahernejad S, Tahernejad A. Personal protective equipment-associated headaches in health care workers during COVID-19: a systematic review and meta-analysis. *Front Public Health*. 2022;10:942046. doi: 10.3389/fpubh.2022.942046. PubMed PMID: 346203699; PubMed Central PMCID: PMC9531821.
- 18 Tahernejad A, Mostafavi R, Tahernejad S, Rostami M. Predicting the Fit between the Respirator and Face based on facial anthropometric dimensions using neural-fuzzy method (used in crises). *J Health Sci Surveill Syst*. 2020;8(4):168-172. doi: 10.30476/jhsss.2020.87581.1097.
- 19 Tahernejad A, Sohrabizadeh S, Tahernejad S. Exploring factors affecting the unsafe behavior of health care workers' in using respiratory masks during COVID-19 pandemic in Iran: a qualitative study. *BMC Health Serv Res*. 2024;24(1):680. doi: 10.1186/s12913-024-11080-2. PubMed PMID: 38831305; PubMed Central PMCID: PMC11147091.
- 20 Jazani RK, Seyedmehdi SM, Kavousi A, Javazm ST. A novel questionnaire to ergonomically assess respirators among health care staff: development and validation. *Tanaffos*. 2018;17(4):257-266. PubMed PMID: 31143216; PubMed Central PMCID: PMC6522134.
- 21 Craig CL, Marshall AL, Sjöström M, Bauman AE, Booth ML, Ainsworth BE, et al. International physical activity questionnaire: 12-country reliability and validity. *Med Sci Sports Exerc*. 2003;35(8):1381-95. doi: 10.1249/01.MSS.0000078924.61453.FB. PubMed PMID: 12900694.
- 22 Vasheghani-Farahani A, Tahmasbi M, Asheri H, Ashraf H, Nedjat S, Kordi R. The Persian, last 7-day, long form of the International Physical Activity Questionnaire: translation and validation study. *Asian J Sports Med*. 2011;2(2):106-16. doi: 10.5812/asjsm.34781. PubMed PMID: 22375226; PubMed Central PMCID: PMC3289202.
- 23 Beck AT, Steer RA, Brown GK. Beck Depression Inventory. 2nd ed. San Antonio, TX: Psychological Corporation; 1996.
- 24 Goudarzi M. The study of reliability and validity of beck hopelessness scale in a group of Shiraz University

students. *Journal of Social Sciences and Humanities of Shiraz University*. 2002;18(2):51-66. [No standard identifier found].

25 Kuorinka I, Jonsson B, Kilbom A, Vinterberg H, Biering-Sørensen F, Andersson G, et al. Standardised Nordic questionnaires for the analysis of musculoskeletal symptoms. *Appl Ergon*. 1987;18(3):233-7. doi: 10.1016/0003-6870(87)90010-x. PubMed PMID: 15676628.

26 Choobineh A, Shahnavaz H, Lahmi M. Major health risk factors in Iranian hand-woven carpet industry. *Int J Occup Saf Ergon*. 2004;10(1):65-78. doi: 10.1080/10803548.2004.11076596. PubMed PMID: 15028194.

27 Mbakwem AC, Akinkunmi M, Ozoh OB, Kushimo OA, Grove TP, Wood DA, et al. Prevalence of cardiometabolic risk factors among professional male long-distance bus drivers in Lagos, south-west Nigeria: a cross-sectional study. *Cardiovasc J Afr*. 2018;29(2):106-114. doi: 10.5830/CVJA-2017-051. PubMed PMID: 29745968; PubMed Central PMCID: PMC6016873.

28 Anto EO, Owiredu W, Adua E, Obirikorang C, Fondjo LA, Annabi-Akollar ME, et al. Prevalence and lifestyle-related risk factors of obesity and unrecognized hypertension among bus drivers in Ghana. *Heliyon*. 2020;6(1):e03147. doi: 10.1016/j.heliyon.2019.e03147. PubMed PMID: 31970247; PubMed Central PMCID: PMC6962040.

29 Ragland DR, Krause N, Greiner BA, Fisher JM. Studies of health outcomes in transit operators: policy implications of the current scientific database. *J Occup Health Psychol*. 1998;3(2):172-87. doi: 10.1037//1076-8998.3.2.172. PubMed PMID: 9585914.

30 Mohsen A, Hakim S. Workplace stress and its relation to cardiovascular disease risk factors among bus drivers in Egypt. *East Mediterr Health J*. 2019;25(12):875-881. doi: 10.26719/2019.25.12.875. PubMed PMID: 31916536.

31 Tamrin SBM, Yokoyama K, Aziz N, Maeda S. Association of risk factors with musculoskeletal disorders among male commercial bus drivers in Malaysia. *Hum Factors Ergon Manuf*. 2014;24(4):369-385. doi: 10.1002/hfm.20593.

32 Liao X, Li J, Zhang Q, Lan Y. Association between musculoskeletal disorders in the lower limbs and occupational stress in bus drivers. *Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi*. 2016;34(8):572-5. Chinese. doi: 10.3760/cma.j.issn.1001-9391.2016.08.003. PubMed PMID: 27682648.

33 Simões MRL, Souza C, Alcantara MAd, Assunção AA. Precarious working conditions and health of metropolitan bus drivers and conductors in Minas Gerais, Brazil. *Am J Ind Med*. 2019;62(11):996-1006. doi: 10.1002/ajim.23040. PubMed PMID: 31441509.

34 Ruiz-Grosso P, Ramos M, Samalvides F, Vega-Dienstmaier J, Kruger H. Common mental disorders in public transportation drivers in Lima, Peru. *PLoS One*. 2014;9(8):e105036. doi: 10.1371/journal.pone.0105036. PubMed PMID: 25119658; PubMed Central PMCID: PMC4132057.

35 Wang X, Wang K, Huang K, Wu X, Huang W, Yang L. The association between demographic characteristics, personality, and mental health of bus drivers in China: A structural equation model. *Physiol Behav*. 2021;233:113347. doi: 10.1016/j.physbeh.2021.113347. PubMed PMID: 33529684.

36 Douma NB, Côté C, Lacasse A. Occupational and ergonomic factors associated with low back pain among car-patrol police officers: findings from the Quebec serve and protect low back pain study. *Clin J Pain*. 2018;34(10):960-966. doi: 10.1097/AJP.0000000000000621. PubMed PMID: 29781954.

37 Lee IM, Shiroma EJ, Lobelo F, Puska P, Blair SN, Katzmarzyk PT. Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. *Lancet*. 2012;380(9838):219-29. doi: 10.1016/S0140-6736(12)61031-9. PubMed PMID: 22818936; PubMed Central PMCID: PMC3645500.

38 Makki F, Hasheminejad N, Tahernejad S, Mirzaee M. Evaluation of the effect of corrective exercise intervention on musculoskeletal disorders, fatigue and working memory of office workers. *Int J Occup Saf Ergon*. 2024;30(2):532-542. doi: 10.1080/10803548.2023.2301672. PubMed PMID: 38240230.

39 Szeto GP, Lam P. Work-related musculoskeletal disorders in urban bus drivers of Hong Kong. *J Occup Rehabil*. 2007;17(2):181-98. doi: 10.1007/s10926-007-9070-7. PubMed PMID: 17333445.

40 Dzakpasu FQ, Carver A, Brakenridge CJ, Cicuttini F, Urquhart DM, Owen N, et al. Musculoskeletal pain and sedentary behaviour in occupational and non-occupational settings: a systematic review with meta-analysis. *Int J Behav Nutr Phys Act*. 2021;18(1):72. doi: 10.1186/s12966-021-01142-7. PubMed PMID: 34059074; PubMed Central PMCID: PMC8168186.

41 Tahernejad A, Makki F, Rezaei E, Marzban H, Tahernejad S, Sahebi A. Musculoskeletal disorders in emergency medical services personnel: a systematic review and meta-analysis. *Public Health*. 2024;231:107-115. doi: 10.1016/j.puhe.2024.02.031. PubMed PMID: 38599171.

42 Tahernejad S, Hejazi A, Rezaei E, Makki F, Sahebi A, Zangiabadi Z. Musculoskeletal Disorders Among Teachers: A Systematic Review and Meta-Analysis. *Front Public Health*. 2024;12:1399552. doi: 10.3389/fpubh.2024.1399552. PubMed PMID: 38813421; PubMed Central PMCID: PMC11134687.

43 Uddin R, Burton NW, Khan A. Combined effects of physical inactivity and sedentary behaviour on psychological distress among university-based young

adults: a one-year prospective study. *Psychiatr Q.* 2020;91(1):191-202. doi: 10.1007/s11126-019-09697-2. PubMed PMID: 31898168.

44 Tahernejad S, Ghaffari S, Ariza-Montes A, Wesemann U, Farahmandnia H, Sahebi A. Post-traumatic stress disorder in medical workers involved in earthquake response: A systematic review and meta-analysis. *Heliyon.* 2023;9(1):e12932. doi: 10.1016/j.heliyon.2023.e12932. PubMed PMID: 36711306; PubMed Central PMCID: PMC9873503.

45 Commissaris D, Douwes M. Recommendations and interventions to decrease physical inactivity at work. Hoofddorp: TNO; 2014. TNO Report R10395.

46 Silva LRB, Seguro CS, de Oliveira CGA, Santos POS, de Oliveira JCM, de Souza Filho LFM, et al. Physical inactivity is associated with increased levels of anxiety, depression, and stress in Brazilians during the COVID-19 pandemic: a cross-sectional study. *Front Psychiatry.* 2020;11:565291. doi: 10.3389/fpsyg.2020.565291. PubMed PMID: 33324253; PubMed Central PMCID: PMC7723949.

47 Stubbs B, Vancampfort D, Hallgren M, Firth J, Veronese N, Solmi M, et al. EPA guidance on physical activity as a treatment for severe mental illness: a meta-review of the evidence and Position Statement from the European Psychiatric Association (EPA), supported by the International Organization of Physical Therapists in Mental Health (IOPTMH). *Eur Psychiatry.* 2018;50:124-144. doi: 10.1016/j.eurpsy.2018.01.002. PubMed PMID: 29428847.

48 Venkata A, DeDios A, ZuWallack R, Lahiri B. Are depressive symptoms related to physical inactivity in chronic obstructive pulmonary disease? *J Cardiopulm Rehabil Prev.* 2012;32(6):405-9. doi: 10.1097/HCR.0b013e3182698b20. PubMed PMID: 23011493.

49 O'Connor PJ, Aenchbacher LE, Dishman RK. Physical activity and depression in the elderly. *J Aging Phys Act.* 1993;1(1):34-58. doi: 10.1123/japa.1.1.34.

50 Nieman DC, Warren BJ, Dotson RG, Butterworth DE, Henson DA. Physical activity, psychological well-being, and mood state in elderly women. *J Aging Phys Act.* 1993;1(1):22-33. doi: 10.1123/japa.1.1.22.

51 Kroeders R, Bernhardt J, Cumming T. Physical inactivity, depression and anxiety in acute stroke. *Int J Ther Rehabil.* 2013;20(6):289-293. doi: 10.12968/ijtr.2013.20.6.289.

52 Nourbakhsh MR, Moussavi SJ, Salavati M. Effects of lifestyle and work-related physical activity on the degree of lumbar lordosis and chronic low back pain in a Middle East population. *Clin Spine Surg.* 2001;14(4):283-92. doi: 10.1097/00002517-200108000-00004. PubMed PMID: 11505333.

53 Gianoudis J, Bailey C, Daly R. Associations between sedentary behaviour and body composition, muscle function and sarcopenia in community-dwelling older adults. *Osteoporos Int.* 2015;26(2):571-9. doi: 10.1007/s00198-014-2895-y. PubMed PMID: 25287755.

54 Wilke HJ, Neef P, Hinz B, Seidel H, Claes L. Intradiscal pressure together with anthropometric data--a data set for the validation of models. *Clin Biomech (Bristol, Avon).* 2001;16 Suppl 1:S111-26. doi: 10.1016/s0268-0033(00)00103-0. PubMed PMID: 11275342.

55 Mork PJ, Westgaard RH. Back posture and low back muscle activity in female computer workers: a field study. *Clin Biomech (Bristol, Avon).* 2009;24(2):169-75. doi: 10.1016/j.clinbiomech.2008.11.001. PubMed PMID: 19097863.

56 Galinsky T, Swanson N, Sauter S, Dunkin R, Hurrell J, Schleifer L. Supplementary breaks and stretching exercises for data entry operators: A follow-up field study. *Am J Ind Med.* 2007;50(7):519-27. doi: 10.1002/ajim.20472. PubMed PMID: 17506511.

57 Zangiabadi Z, Makki F, Marzban H, Salehinejad F, Sahebi A, Tahernejad S. Musculoskeletal disorders among sonographers: a systematic review and meta-analysis. *BMC Health Serv Res.* 2024;24(1):680. doi: 10.1186/s12913-024-11080-2. PubMed PMID: 38831305; PMCID: PMC11147091.