1 Lee Y-H, Cheng F-Y, Chiu H-W, Tsai J-C, Fang C-Y, Chen C-W, et al. Cytotoxicity, oxidative stress, apoptosis and the autophagic effects of silver nanoparticles in mouse embryonic fibroblasts. Biomaterials 2014; 35(16): 4706-15 . https://doi.org/10.1016/j.biomaterials.2014.02.021.
2 Senapati S. Biosynthesis and immobilization of nanopaticles and their applications, Thesis (PhD). University of Pune. India. 1 (2005).
3 Verma P, Maheshwari SK. Minimum biofilm eradication concentration (MBEC) assay of Silver and Selenium nanoparticles against biofilm forming Staphylococcus aureus. JMSCR 2017; 5(4): 20213-20222. https://dx.doi.org/10.18535/jmscr/v5i4.77.
4 Kumar S, Mitra A, Halder D. Centella asiatica leaf mediated synthesis of silver nanocolloid and its application as filler in gelatin based antimicrobial nanocomposite film. LWT – Food Sci Technol 2017; 75: 293-300. https://doi.org/10.1016/j.lwt.2016.06.061.
5 Verma P. A review on synthesis and their antibacterial activity of Silver and Selenium nanoparticles against biofilm forming Staphylococcus aureus. World J Pharm Pharmaceut Sci 2015; 4: 652-77.
6 Sotiriou GA, Pratsinis SE. Engineering nanosilver as an antibacterial, biosensor and bioimaging material. Curr Opin Chem Biol 2011; 1(1): 3-10. https://doi.org/10.1016/j.coche.2011.07.001.
7 Eslami M, Bayat M, Nejad ASM, Sabokbar A, Anvar AA. Effect of polymer/nanosilver composite packaging on long-term microbiological status of Iranian saffron (Crocus sativus L.). Saudi J Bio Sci 2016; 23(3): 341-7. https://doi.org/10.1016/j.sjbs.2015.07.004.
8 Bumbudsanpharoke N, Choi J, Ko S. Applications of nanomaterials in food packaging. J Nanosci Nanotechnol 2015; 15(9): 6357-72. https://doi.org/10.1166/jnn.2015.10847 .
9 Castro-Mayorga J, Fabra M, Lagaron J. Stabilized nanosilver based antimicrobial poly (3-hydroxybutyrate-co-3-hydroxyvalerate) nanocomposites of interest in active food packaging. Innov Food Sci Emerg Technol 2016; 33: 524-33. https://doi.org/10.1016/j.ifset.2015.10.019.
10 Huang H, Yang X. Synthesis of polysaccharide-stabilized gold and silver nanoparticles: a green method. Carbohydr Res 2004; 339(15): 2627-31. https://doi.org/10.1016/j.carres.2004.08.005.
11 Wang H, Qiao X, Chen J, Ding S. Preparation of silver nanoparticles by chemical reduction method. Colloids Surf A 2005; (256): 111-115. https://doi.org/10.1016/j.colsurfa.2004.12.058.
12 Long D, Wu G, Chen S. Preparation of oligochitosan stabilized silver nanoparticles by gamma irradiation. Radiat Phys Chem. 2007; 76(7): 1126-31. https://doi.org/10.1016/j.radphyschem.2006.11.001.
13 Zielińska A, Skwarek E, Zaleska A, Gazda M, Hupka J. Preparation of silver nanoparticles with controlled particle size. Procedia Chem. 2009; 1(2): 1560-6. https://doi.org/10.1016/j.proche.2009.11.004.
15 Frey EC. Influence of Silver Nanoparticle Surface Charge on Cytotoxic Efficacy against Cancer Cells, Thesis (PhD).University of California. San Luis Obispo. 1(2017).
16 Hernández-Sierra JF, Galicia-Cruz O, Salinas-Acosta A, Ruíz F, Pierdant-Pérez M, Pozos-Guillén A. In vitro cytotoxicity of silver nanoparticles on human periodontal fibroblasts. J Clin Pediatr Dent 2011; 36(1): 37-42. https://doi.org/10.17796/jcpd.36.1.d677647166398886.
17 Movagharnia R, Baghbani-Arani F, Shandiz S, Ataollah S. Cytotoxicity effects of green synthesized silver nanoparticles on human colon cancer (HT29) cells. J Kashan Univ Med Sci—Feyz 2018; 22(1): 31-8.
http://feyz.kaums.ac.ir/article-1-3196-en.html.
18 Oberdörster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K, et al. Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2005; 2(1): 8. https://doi.org/10.1186/1743-8977-2-8.
19 Kamali M, Ghorashi SAA, Asadollahi MA. Controllable synthesis of silver nanoparticles using citrate as complexing agent: Characterization of nanopartciles and effect of pH on size and crystallinity. Iran J Chem Chem Eng 2012; 31(4): 21-8.
20 Oćwieja M, Barbasz A, Walas S, Roman M, Paluszkiewicz C. Physicochemical properties and cytotoxicity of cysteine-functionalized silver nanoparticles. Colloid Surface B 2017; 160: 429-37. https://doi.org/10.1016/j.colsurfb.2017.09.042.
21 Oćwieja M, Adamczyk Z. Controlled release of silver nanoparticles from monolayers deposited on PAH covered mica. Langmuir 2013; 29(11): 3546-55.
https://doi.org/10.1021/la304855k.
22 Gurunathan S, Han JW, Eppakayala V, Jeyaraj M, Kim J-H. Cytotoxicity of biologically synthesized silver nanoparticles in MDA-MB-231 human breast cancer cells. BioMed Res Int 2013; 2013. https://doi.org/10.1155/2013/535796.
23 Poormontaseri M, Hosseinzadeh S, Shekarforoush SS, Kalantari T. The effects of probiotic Bacillus subtilis on the cytotoxicity of Clostridium perfringens type a in Caco-2 cell culture. BMC Microbiol 2017; 17(1): 150. https://doi.org/10.1186/s12866-017-1051-1.
24 Tyliszczak B, Drabczyk A, Kudłacik-Kramarczyk S, Bialik-Wąs K, Kijkowska R, Sobczak-Kupiec A. Preparation and cytotoxicity of chitosan-based hydrogels modified with silver nanoparticles. Colloid Surface B 2017; 160: 325-30. https://doi.org/10.1016/j.colsurfb.2017.09.044.
25 Ciniglia C, Pinto G, Sansone C, Pollio A. Acridine orange/Ethidium bromide double staining test: A simple in-vitro assay to detect apoptosis induced by phenolic compounds in plant cells. Allelopathy J (2010); 26: 301-308.
26 Saudi A, Rafienia M, Zargar Kharazi A, Salehi H, Zarrabi A, Karevan M. Design and fabrication of poly (glycerol sebacate)-based fibers for neural tissue engineering: Synthesis, electrospinning, and characterization. Polym Advan Technol 2019; 30(6): 1427-40. https://doi.org/10.1002/pat.4575.
27 Devi J, Bhimba B. Anticancer activity of silver nanoparticles synthesized by the seaweed Ulva lactuca in vitro. Sci Rep 2012; 1: 242. http://dx.doi.org/10.4172/scientificreports.242.