Document Type : Original Article

Authors

1 Department of Public Health, Torbat Jam Faculty of Medical Sciences, Torbat Jam, Iran

2 Department of Food Hygiene and Quality Control, Division of Epidemiology and Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran

3 HIV/STI Surveillance Research Center, and WHO Collaborating Center for HIV Surveillance, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran

4 Health Services Management Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran

Abstract

Background: Visceral leishmaniasis (VL) is a neglected infection currently occurring in some regions of Europe, Asia, Africa, and America. This study was an attempt to determine the temporal patterns of VL from January 2000 to December 2019 in the Ardabil Province of north-western Iran using the Markov Switching Models (MSM).
Methods: This descriptive study used monthly data of 602 VL cases during the study period. The data were provided by the Leishmaniasis National Surveillance System (LNSS), the Iran Meteorological Organization (IMO), and Space Agency (SA), and two states were considered for such modelling. Given the Akaike and Bayesian information criterion, the two-state MSM with a five-month lag is an appropriate model.
Results: The MSM showed that the probability of staying in the non-epidemic state is 67%, (P11), while that of staying in an epidemic state is 93% (P22). The mean absolute percentage error (MAPE) was 31.63%, and the portmanteau test (Q=19.03, P=0.66) for the residuals of the selected model revealed that the data were completely modelled. The total VL cases in the next 24 months forecasted 14 cases.
Conclusion: The MSM has a relatively acceptable predictive power and is useful in planning future interventions with more information about different stages of the epidemic it provides to policymakers for early warning of epidemics.

Keywords

  1. Vieira CP, Oliveira AM, Rodas LA, Dibo MR, Guirado MM, Chiaravalloti Neto F. Temporal, spatial and spatiotemporal analysis of the occurrence of visceral leishmaniasis in humans in the City of Birigui, State of São Paulo, from 1999 to 2012. Rev Soc Bras Med Trop. 2014;47(3):350-8. doi: 10.1590/0037-8682-0047-2014. PMID: 25075487.
  2. Rahmanian V, Rahmanian K, Sotoodeh-Jahromi A, Bokaie S. Systematic review and meta-analysis of human visceral leishmaniasis in Iran. Acta facultatis medicae Naissensis. 2019;36(4):279-93. doi: 10.5937/afmnai1904279R.
  3. Shokri A, Fakhar M, Teshnizi SH. Canine visceral leishmaniasis in Iran: A systematic review and meta-analysis. Acta Trop. 2017;165:76-89. doi: 10.1016/j.actatropica.2016.08.020. PMID: 27570207.
  4. Jafari S, Hajiabdolbaghi M, Mohebali M, Hajjaran H, Hashemian H. Disseminated leishmaniasis caused by Leishmania tropica in HIV-positive patients in the Islamic Republic of Iran. East Mediterr Health J. 2010 Mar;16(3):340-3. PMID: 20795452.
  5. Badirzadeh A, Mohebali M, Sabzevari S, Ghafoori M, Arzamani K, Seyyedin M, et al. Case Report: First Coinfection Report of Mixed Leishmania infantum/Leishmania major and Human Immunodeficiency Virus-Acquired Immune Deficiency Syndrome: Report of a Case of Disseminated Cutaneous Leishmaniasis in Iran. Am J Trop Med Hyg. 2018 Jan;98(1):122-125. doi: 10.4269/ajtmh.17-0490. PMID: 29165208; PMCID: PMC5928724.
  6. Shafiei R, Mohebali M, Akhoundi B, Galian MS, Kalantar F, Ashkan S, et al. Emergence of co-infection of visceral leishmaniasis in HIV-positive patients in northeast Iran: a preliminary study. Travel Med Infect Dis. 2014;12(2):173-8. doi: 10.1016/j.tmaid.2013.09.001. PMID: 24100200.
  7. Shirzadi M, Mohebali M, Gharaghutloo F. National guideline for  Visceral leishmaniasis in humans control. 2 ed. Tehran: setoodeh; 2015. p. 4-6.
  8. Moradi-Asl E, Mohebali M, Rassi Y, Vatandoost H, Saghafipour A. Environmental Variables Associated with Distribution of Canine Visceral Leishmaniasis in Dogs in Ardabil Province, Northwestern Iran: A Systematic Review. Iran j public health. 2020;49(9):1033-44.doi: 10.18502/ijph.v49i6.3354
  9. Chamaillé L, Tran A, Meunier A, Bourdoiseau G, Ready P, Dedet JP. Environmental risk mapping of canine leishmaniasis in France. Parasit Vectors. 2010;3:31. doi: 10.1186/1756-3305-3-31. PMID: 20377867; PMCID: PMC2857865.
  10. Campos R, Santos M, Tunon G, Cunha L, Magalhães L, Moraes J, et al. Epidemiological aspects and spatial distribution of human and canine visceral leishmaniasis in an endemic area in northeastern Brazil. Geospat Health. 2017;12(1):503. doi: 10.4081/gh.2017.503. PMID: 28555473.
  11. Ashkanifar S, Fata A, Aalami M, Mohebali M, Jarrahi L, Amadeh M, et al. Seroepidemiological Study Of Asymptomatic Visceral Leishmaniasis Among Children Living In Rural Areas Of North And Central Khorasan ,Iran. J Mashhad Univ Med Scie. 2016;59(5):283-92.
  12. Mohebali M, Hamzavi Y, Edrissian GH, Forouzani A. Seroepidemiological study of visceral leishmaniasis among humans and animal reservoirs in Bushehr province, Islamic Republic of Iran. East Mediterr Health J. 2001;7(6):912-7. PMID: 15332732.
  13. Moradi-Asl E, Hanafi-Bojd AA, Rassi Y, Vatandoost H, Mohebali M, Yaghoobi-Ershadi MR, et al. Situational Analysis of Visceral Leishmaniasis in the Most Important Endemic Area of the Disease in Iran. J Arthropod Borne Dis. 2017 Dec 30;11(4):482-496. PMID: 29367925; PMCID: PMC5775155.
  14. Belo VS, Werneck GL, Barbosa DS, Simões TC, Nascimento BW, da Silva ES, et al. Factors associated with visceral leishmaniasis in the americas: a systematic review and meta-analysis. PLoS Negl Trop Dis. 2013;7(4):e2182. doi: 10.1371/journal.pntd.0002182.
  15. Heidari A, Mohebali M, Kabir K, Barati H, Soultani Y, Keshavarz H, et al. Visceral Leishmaniasis in Rural Areas of Alborz Province of Iran and Implication to Health Policy. Korean J Parasitol. 2015;53(4):379-83. doi: 10.3347/kjp.2015.53.4.379. PMID: 26323835; PMCID: PMC4566508.
  16. Rajabi M, Mansourian A, Pilesjo P, Bazmani A. Environmental modelling of visceral leishmaniasis by susceptibility-mapping using neural networks: a case study in north-western Iran. Geospatial health. 2014;9(1):179-91. doi: 10.4081/gh.2014.15. PubMed PMID: 25545935.
  17. Moradi-Asl E, Mohebali M, Rassi Y, Vatandoost H, Saghafipour A. Environmental Variables Associated with Distribution of Canine Visceral Leishmaniasis in Dogs in Ardabil Province, Northwestern Iran: A Systematic Review. Iran J Public Health.2020;49(6): 1033-1044. doi:10.18502/ijph.v49i6.3354
  18. Unkel S, Farrington CP, Garthwaite PH, Robertson C, Andrews N. Statistical methods for the prospective detection of infectious disease outbreaks: a review. Journal of the Royal Statistical Society: Series A (Statistics in Society). 2012;175(1):49-82. doi: 10.1111/j.1467-985X.2011.00714.x
  19. Zhang X, Liu Y, Yang M, Zhang T, Young AA, Li X. Comparative study of four time series methods in forecasting typhoid fever incidence in China. PLoS One. 2013;8(5):e63116. doi: 10.1371/journal.pone.0063116. PMID: 23650546; PMCID: PMC3641111.
  20. Yang L, Bi ZW, Kou ZQ, Li XJ, Zhang M, Wang M, et al. Time-series analysis on human brucellosis during 2004-2013 in Shandong Province, China. Zoonoses Public Health. 2015;62(3):228-35. doi: 10.1111/zph.12145. PMID: 25043064.
  21. Rahmanian V, Rahmanian K, Mansoorian E, Jahromi AS, Madani A. Epidemiological characteristics and temporal trend of human and bovine brucellosis cases, Southern Iran, 2009-2016. Pakistan Journal of Medical and Health Sciences. 2018;12(1):488-95.
  22. Rahmanian V, Bokaie S, Rahmanian K, Hosseini S, Taj Firouzeh A. Analysis of temporal trends of human brucellosis during 2013-2018 in Yazd Province to predict future trends in incidence: A time-series study using ARIMA model. Asian Pac J Trop Med. 2020;13(4):1-6. doi: 10.4103/1995-7645.281528
  23. Esmaeilzadeh N, Shakeri M, Esmaeilzadeh M, Rahmanian V. ARIMA models forecasting the SARS-COV-2 in the Islamic Republic of Iran. Asian Pac J Trop Med 2020;13:521-4. doi: 10.4103/1995-7645.291407 .
  24. Benvenuto D, Giovanetti M, Vassallo L, Angeletti S, Ciccozzi M. Application of the ARIMA model on the COVID-2019 epidemic dataset. Data Brief. 2020;29:105340. doi: 10.1016/j.dib.2020.105340. PMID: 32181302; PMCID: PMC7063124.
  25. Song X, Xiao J, Deng J, Kang Q, Zhang Y, Xu J. Time series analysis of influenza incidence in Chinese provinces from 2004 to 2011. Medicine (Baltimore). 2016;95(26):e3929. doi: 10.1097/MD.0000000000003929. PMID: 27367989; PMCID: PMC4937903.
  26. Ansari H, Mansournia MA, Izadi S, Zeinali M, Mahmoodi M, Holakouie-Naieni K. Predicting CCHF incidence and its related factors using time-series analysis in the southeast of Iran: comparison of SARIMA and Markov switching models. Epidemiol Infect. 2015;143(4):839-50. doi: 10.1017/S0950268814001113. PMID: 25703403; PMCID: PMC9507073.
  27. Tohidinik HR, Mohebali M, Mansournia MA, Niakan Kalhori SR, Ali-Akbarpour M, Yazdani K. Forecasting zoonotic cutaneous leishmaniasis using meteorological factors in eastern Fars province, Iran: a SARIMA analysis. Trop Med Int Health. 2018;23(8):860-869. doi: 10.1111/tmi.13079. PMID: 29790236.
  28. Selmane S. Dynamic relationship between climate factors and the incidence of cutaneous leishmaniasis in Biskra Province in Algeria. Ann Saudi Med. 2015;35(6):445-9. doi: 10.5144/0256-4947.2015.445. PMID: 26657228; PMCID: PMC6074468.
  29. Rahmanian V, Bokaie S, Haghdoost A, Barouni M. Predicting cutaneous leishmaniasis using SARIMA and Markov switching models in Isfahan, Iran: A time-series study. Asian Pac J Trop Med 2021;14:83-93. doi: 10.4103/1995-7645.306739
  30. Lu H-M, Zeng D, Chen H. Prospective infectious disease outbreak detection using Markov switching models. IEEE Transactions on Knowledge and Data Engineering. 2009;22(4):565-77. doi: 10.1109/TKDE.2009.115
  31. Yan J, Wang L. Suitability evaluation for products generation from multisource remote sensing data. Remote Sensing. 2016;8(12):995.doi: 10.3390/rs8120995
  32. Li Y, Zheng C. Associations between Meteorological Factors and Visceral Leishmaniasis Outbreaks in Jiashi County, Xinjiang Uygur Autonomous Region, China, 2005-2015. 2019;16(10). doi: 10.3390/ijerph16101775. PubMed PMID: 31137482.
  33. McDowall D, McCleary R, Bartos BJ. Interrupted time series analysis: Oxford University Press; 2019.
  34. Coura-Vital W, Reis AB, Reis LE, Braga SL, Roatt BM, Aguiar-Soares RD, et al. Canine visceral leishmaniasis: incidence and risk factors for infection in a cohort study in Brazil. Vet Parasitol. 2013 8;197(3-4):411-7. doi: 10.1016/j.vetpar.2013.07.031. PMID: 23941965.
  35. Lima ÁLM, de Lima ID, Coutinho JFV, de Sousa ÚPST, Rodrigues MAG, Wilson ME, et al. Changing epidemiology of visceral leishmaniasis in northeastern Brazil: a 25-year follow-up of an urban outbreak. Trans R Soc Trop Med Hyg. 2017;111(10):440-447. doi: 10.1093/trstmh/trx080. PMID: 29394411; PMCID: PMC5914331.
  36. Le Strat Y, Carrat F. Monitoring epidemiologic surveillance data using hidden Markov models. Statistics in medicine. 1999;18(24):3463-78. doi: 10.1002/(sici)1097-0258(19991230)18:24<3463::aid-sim409>3.0.co;2-i. PMID: 10611619
  37. Mohammadian-Khoshnoud M, Sadeghifar M, Cheraghi Z, Hosseinkhani Z. Predicting the incidence of brucellosis in Western Iran using Markov switching model. BMC Res Notes. 2021;14(1):79. doi: 10.1186/s13104-020-05415-5. PMID: 33648578; PMCID: PMC7923320.
  38. Rafei A, Pasha E, Jamshidi Orak R. Tuberculosis surveillance using a hidden markov model. Iran J Public Health. 2012;41(10):87-96. PMID: 23304666; PMCID: PMC3494236.
  39. Safari M, Sadeghifar M, Roshanaei G, Zahiri A. Application of hidden markov model in forecasting new cases of tuberculosis in Hamadan province based on the recorded cases during 2006-2016. Iranian Journal of Epidemiology. 2018;14(2):126-35.
  40. Cooper B, Lipsitch M. The analysis of hospital infection data using hidden Markov models. Biostatistics. 2004;5(2):223-37. doi: 10.1093/biostatistics/5.2.223. PMID: 15054027.