Document Type : Original Article

Authors

1 Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute Kreuzstrasse 2, Allschwil, CH-4123, Switzerland

2 University of Basel, Basel, Switzerland

3 Department of Occupational Health, Faculty of Health, Qom University of Medical Sciences, Qom, Iran

4 Department Health Management and Social Development Research Center, Faculty of Health, Golestan University of Medical Sciences, Gorgan, Iran

5 Department Occupational health, Faculty of Health, Golestan University of Medical Sciences, Gorgan, Iran

6 Environmental Health Research Center, Golestan University of Medical Sciences, Gorgan, Iran

Abstract

Background: This study aims to assess the consistency of the newly developed Outdoor Environmental Heat Index (OEHI) with existing environmental and physiological heat indices in low thermal stress
conditions. This comparison is necessary due to potential variations in the performance of a heat stress index when applied in conditions different from those for which it was developed.
Methods: Two current and valid outdoor heat indices, including Wet Bulb Globe Temperature (WBGT) and Humidex (HD), were used in a descriptive-analytical study to compare the results obtained by OEHI and other indices in evaluating the same condition. Furthermore, the authors considered tympanic temperature as a physiological response to heat and assessed the work environment of 63 outdoor workers at three-hour intervals during the workday.
Results: The highest coefficient of determination was assigned to OEHI and Humidex index (R2>0.99, P<0.0001). Regarding the correlation between the OEHI and the WBGT index, this correlation with and without considering the time of the measurement was higher than 0.98. Comparisons for the correlations of thermal indices with tympanic temperature showed poor and significant relations between thermal indices and tympanic temperature (R2<0.19, P<0.0001).
Conclusion: OEHI can evaluate the thermal condition in low heat stress conditions, similar to other current and valid thermal stress indices, including WBGT and Humidex. The OEHI shows a better correlation with the Humidex than the WBGT index. However, due to the poor correlation observed between OEHI and tympanic temperature in low-stress conditions, it is recommended to use this index just as a screening index to estimate thermal environmental conditions.

Highlights

Hamidreza Heidari (Google Scholar)

Keywords

  1. Nunfam VF, Oosthuizen J, Adusei-Asante K, Van Etten EJ, Frimpong K. Perceptions of climate change and occupational heat stress risks and adaptation strategies of mining workers in Ghana. Sci Total Environ. 2019;657:365-78. doi:1016/j.scitotenv.2018.11.480; PMID: 30550901.
  2. Gao C, Kuklane K, Östergren P-O, Kjellstrom T. Occupational heat stress assessment and protective strategies in climate change. Int J Biometeorol. 2018;62(3):359-71. doi:10.1007/s00484-017-1352-y.
  3. Spector JT, Sheffield PE. Re-evaluating occupational heat stress in a changing climate. Ann Occup Hyg. 2014; 58(8):936-42. doi: 1093/annhyg/meu073; PMID: 25261455; PMCID: PMC4481564.
  4. Parsons K. Human thermal environment. The effects of hot, moderate, and cold temperatures on human health, comfort and performance.: CRC Press, New York; 2014. doi: 1201/b16750.
  5. Heidari H, Golbabaei F, Shamsipour A, Forushani AR, Gaeini A. Consistency between sweat rate and wet bulb globe temperature for the assessment of heat stress of people working outdoor in arid and semi-arid regions. Int J Occup Environ Med. 2018;9(1):1. doi: 15171/ijoem.2018.1204; PMID: 29319050; PMCID: PMC6466968.
  6. Blazejczyk K, Epstein Y, Jendritzky G, Staiger H, Tinz B. Comparison of UTCI to selected thermal indices. Int J Biometeorol. 2012;56(3):515-35. doi: 10.1007/s00484-011-0453-2.
  7. Moran DS, Pandolf KB, Shapiro Y, Heled Y, Shani Y, Mathew W, et al. An environmental stress index (ESI) as a substitute for the wet bulb globe temperature (WBGT). J Therm Biol. 2001;26(4-5):427-31. doi: 10.1016/S0306-4565(01)00055-9.
  8. Heidari H, Golbabaei F, Shamsipour A. Determination of air enthalpy based on meteorological data as an indicator for heat stress assessment in occupational outdoor environments, a field study in Iran. J Res Health Sci. 2016;16(3):133. PMID: 27840341; PMCID: PMC7191019.
  9. Golbabaei F, Heidari H, Shamsipour A, Forushani AR, Gaeini A. A new outdoor environmental heat index (OEHI) as a simple and applicable heat stress index for evaluation of outdoor workers. Urban Climate. 2019;29:100479. doi: 10.1016/j.uclim.2019.100479.
  10. Heidari H, Golbabaei F, Shamsipour A, Rahimi Forushani A, Gaeini A. The cut-off point for tympanic temperature as a heat strain index for evaluation of outdoor workers: a field study. Int. J. Occup. Saf. Ergon.. 2018;24(2):224-32. doi: 1080/10803548.2017.1281524.
  11. Eyelade OR, Orimadegun AE, Akinyemi OA, Tongo OO, Akinyinka OO. Esophageal, tympanic, rectal, and skin temperatures in children undergoing surgery with general anesthesia. Journal of PeriAnesthesia Nursing. 2011;26(3):151-9. doi: 10.1016/j.jopan.2011.03.009.
  12. Yousif TA, Tahir HM. Application of Thom's thermal discomfort index in Khartoum state, Sudan. J Forest Prod Indust. 2013;2(5):36.
  13. Lumingu HMM, Dessureault P. Physiological responses to heat strain: A study on personal monitoring for young workers. J Therm Biol. 2009;34(6):299-305. doi: 10.1016/j.jtherbio.2009.04.001.
  14. Moran D, Pandolf K, Shapiro Y, Laor A, Heled Y, Gonzalez R. Evaluation of the environmental stress index for physiological variables. J Therm Biol. 2003;28(1):43-9. doi: 10.1016/S0306-4565(02)00035-9.
  15. Standard ISO- 9920, Ergonomics of the Thermal Environment — Estimation of Thermal Insulation and Water Vapour Resistance of a Clothing Ensemble. International Standard Organization, Geneva, 2007.
  16. Standard ISO-7243, Ergonomics of the thermal environment — Assessment of heat stress using the WBGT (wet bulb globe temperature) index. International Standard Organization, Geneva, 2017.
  17. Alfano FRdA, Palella BI, Riccio G. Thermal environment assessment reliability using temperature―humidity indices. Ind Health. 2010:1008190028. doi: 2486/indhealth.MS1097.
  18. Masterton JM, Richardson F. Humidex: a method of quantifying human discomfort due to excessive heat and humidity: Environment Canada, Atmos. Environ. 1979.
  19. Heidari H, Golbabaei F, Shamsipour A, Forushani AR, Gaeini A. Outdoor occupational environments and heat stress in IRAN. J Environ Health Sci Eng. 2015;13(1):1-8. doi: 10.1186/s40201-015-0199-6.
  20. Parsons K. Heat stress standard ISO 7243 and its global application. Ind health. 2006;44(3):368-79. doi: 2486/indhealth.44.368.
  21. Rodrigues VC, da Silva IJO, Vieira FMC, Nascimento ST. A correct enthalpy relationship as thermal comfort index for livestock. Int J Biometeorol. 2011;55(3):455-9. doi: 10.1007/s00484-010-0344-y.
  22. Vatani J, Golbabaei F, Dehghan SF, Yousefi A. Applicability of Universal Thermal Climate Index (UTCI) in occupational heat stress assessment: a case study in brick industries. Ind health. 2015. doi: 2486/indhealth.2015-0069.
  23. Galan JC, Guedes J. Applicability of heat stress index in the context of military work: Pilot study. Occup Environ Saf Health: Springer; 2019. p. 313-22. doi: 10.1007/978-3-030-14730-3_34.
  24. Heo S, Bell ML, Lee J-T. Comparison of health risks by heat wave definition: Applicability of wet-bulb globe temperature for heat wave criteria. Environ Res. 2019;168:158-70. doi: 10.1016/j.envres.2018.09.032.
  25. Heidari HR, Golbabaei F, Arsang Jang S, Shamsipour AA. Validation of humidex in evaluating heat stress in the outdoor jobs in arid and semi-arid climates of Iran.  J Health Saf Work . 2016;6(3):29-42.
  26. Heidari H, Rahimifard H, Mohammadbeigi A, Golbabaei F, Sahranavard R, Shokri Z. Validation of air enthalpy in evaluation of heat stress using wet bulb globe temperature (WBGT) and body core temperature: A case study in a hot and dry climate.   J Health Saf Work . 2018;8(1):81-92.
  27. Chu C-M, Jong T-L. Enthalpy estimation for thermal comfort and energy saving in air conditioning system. Energ Convers Manag. 2008;49(6):1620-8. doi: 10.1016/j.enconman.2007.12.012.
  28. Motamedzade M, Azari M. Heat stress evaluation using environmental and biological monitoring. Pakistan J Biol Sci. 2006;9(3):457-9.
  29. Dehghan H, Mortazavi SB, Jafari MJ, Maracy MR. Combination of wet bulb globe temperature and heart rate in hot climatic conditions: The practical guidance for a better estimation of the heat strain. Int J Environ Health Eng. 2012;1(1):18. doi:  4103/2277-9183.96006.
  30. Nassiri P, Monazzam M, Golbabaei F, Shamsipour A, Teimori G, Arabalibeik H, et al. Validity of thermal comfort indices based on human physiological responses in typical open pit mines.  Int J Occup Hyg.  2017;9(1):26-32.
  31. Easton C, Fudge BW, Pitsiladis YP. Rectal, telemetry pill and tympanic membrane thermometry during exercise heat stress. J Therm Biol. 2007;32(2):78-86. doi: 10.1016/j.jtherbio.2006.10.004.
  32. Chen M-L, Chen C-J, Yeh W-Y, Huang J-W, Mao I-F. Heat stress evaluation and worker fatigue in a steel plant. AIHA Journal. 2003; 64 (3): 352-9. doi: 1080/15428110308984827.
  33. Golbabaei F, Monazzam M, Hematjo R, Hosseini M, Fahang-Dehghan S. The assessment of heat stress and heat strain in pardis petrochemical complex, Tehran, Iran. Int J Occup Hyg. 2013;5(1):6-11.
  34. Mohammadian M, Heidari H, Charkhloo E, Dehghani A. Heat stress and physiological and perceptual strains of date harvesting workers in palm groves in Jiroft. Work. 2020;66(3):625-36. doi: 10.3233/WOR-203205.