Document Type : Original Article

Authors

1 Department of Vector Biology and Control of Diseases, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran

2 Department of Vector Biology and Control of Diseases, School of Health, Tehran University of Medical Sciences, Tehran, Iran

3 Research Center for Health Sciences, Institute of Health, Department of Vector Biology and Control of Diseases, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran

4 Department of Arboviruses and Viral Hemorrhagic Fevers, Pasteur Institute of Iran

5 Student Research Committee, Department of Vector Biology and Control of Diseases, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran

6 Sirjan School of Medical Sciences, Sirjan, Iran

7 Department of Physiotherapy and Rehabilitation, Yeditepe University, Istanbul, Turkey

10.30476/jhsss.2024.100128.1826

Abstract

Background: Mosquitoes (Diptera: Culicidae) are significant vectors of mosquito-borne diseases prevalent across temperate and tropical regions. Understanding the abundance and distribution of these vectors is essential for studying the ecoepidemiology of mosquito-borne diseases.
Methods: This cross-sectional study aimed to identify mosquito populations (Culicidae) and conduct molecular analysis for Flavivirus infections, explicitly focusing on West Nile Virus (WNV) and Dengue Virus (DENV) in Fars Province, Southern Iran. Mosquitoes were collected from 23 stations across urban and rural areas and migratory bird habitats in five counties, using hand catch with manual aspirators, CDC light traps with CO2, and human and animal bait methods from April to December 2018. Molecular screening for Flavivirus RNA, including WNV and DENV, was performed using a specific PCR technique.
Results: 8212 adult mosquitoes were collected, representing four genera and nine species. The most prevalent species were Culex pipiens (54.20%), Culiseta longiareolata (30.40%), and Culex sinaiticus (10.25%). Molecular screening was conducted on the 8212 mosquitoes grouped into 150 pools based on sex, species, and trapping location. None of the pools tested were positive for Flavivirus RNA.
Conclusion: This study highlights the importance of monitoring mosquito species distribution and emphasizes the need for enhanced Flavivirus surveillance and long-term monitoring programs in the region to understand the risk of disease transmission better.

Highlights

Masoumeh Amin (PubMed)

Hamidreza Basseri (PubMed)

Keywords

  1. Zaim, M. and P.S. Cranston. 1986. Checklist and keys to the Culicinae of Iran. Mosq. Syst. 18: 233-45.
  2. Schweitzer B.K. and Chapman N.M, Iwen P.C. Overview of the Flaviviridae, emphasizing the Japanese encephalitis group viruses. Laboratory medicine. 2009; 40(8): 493-99. doi: 10.1309/LM5YWS85NJPCWESW.
  3. Hubálek Z. and Halouzka J. West Nile fever--a re-emerging mosquito-borne viral disease in Europe. Emerg Infect Dis. 1999; 5(5): 643-50. doi: 3201/eid0505.990505. PMID: 10511520; PMCID: PMC2627720.
  4. Azari-Hamidian S, Harbach, R.E.. Keys to the adult females and fourth-instar larvae of the mosquitoes of Iran (Diptera: Culicidae). Zootaxa. 2009; 2078(1): 1-33. doi: 11646/zootaxa.2078.1.1.
  5. Djadid N.D, Jazayeri H, Gholizadeh S, Rad S.P, Zakeri S. First record of a new member of Anopheles Hyrcanus Group from Iran: molecular identification, diagnosis, phylogeny, status of kdr resistance and Plasmodium infection. J Med Entomol. 2009; 46(5): 1084-93. doi: 10.1603/033.046.0515. PMID: 19769039.
  6. Bozorg-Omid F, Oshaghi M.A, Vahedi M, Karimian F, Seyyed-Zadeh S.J, Chavshin A.R. Wolbachia infection in West Nile Virus vectors of northwest Iran. Applied entomol. and zool. 2020; 55: 105-13. doi:1007/s13355-019-00658-6.
  7. Kourosh Azizi K, Dorzaban H, Soltani A, Alipour H, Jaberhashemi SA, Salehi-Vaziri M, et al. Monitoring of Dengue Virus in Field-caught Aedes Species (Diptera: Culicidae) by Molecular Method, from 2016 to 2017 in Southern Iran. J Health Sci Surveillance Sys. 2023; 11(1): 77-83. doi: 10.30476/jhsss.2022.94608.1548.
  8. Moin-Vaziri V, Charrel R.N, Badakhshan M, Lamballerie X, Rahbarian N, Bavani M.M, et al. A Molecular screening of mosquitoes (Diptera: Culicidae) for flaviviruses in a focus of West Nile virus infection in northern Iran. J Arthropod-Borne Dis. 2019; 13(4): 391-98. doi: 10.18502/jad.vl3i4.2235.
  9. Amin M, Zaim M, Edalat H, Basseri H.R, Yaghoobi-Ershadi M.R, Rezaei F, et al. Seroprevalence Study on West Nile Virus (WNV) Infection, a Hidden Viral Disease in Fars Province, Southern Iran. J Arthropod-Borne Dis. 2020; 14(20: 173-84. doi.org/10.18502/jad.v14i2.3735.
  10. Alkan C, Alwassouf S, Piorkowski G, Bichaud L, Tezcan S, Dincer E, et al. Isolation, genetic characterization, and seroprevalence of Adana virus, a novel phlebovirus belonging to the Salehabad virus complex, in Turkey. J Virol. 2015; 89(8): 4080-91. doi: 10.1128/JVI.03027-14. PMID: 25653443; PMCID: PMC4442372.
  11. Moureau G Temmam S, Gonzalez JP, Charre RNGrard G, X de Lamballerie. A real-time RT-PCR method for the universal detection and identification of flaviviruses. Vector Borne Zoonotic Dis. 2007; 7(4): 467-77. doi: 10.1089/vbz.2007.0206. PMID: 18020965.
  12. Vinogradova E.B. Culex pipiens pipiens mosquitoes: taxonomy, distribution, ecology, physiology, genetics, applied importance and control. 2000. Pensoft Publishers.
  13. Kazemi S.M, Karimian F, Davari B. Culicinae mosquitoes in Sanandaj county, Kurdistan province, western Iran. J Vector Borne Dis. 2010; 47(2): 103-7. PMID: 20539048.
  14. Khoshdel-Nezamiha F, Vatandoost H, Azari-Hamidian S, Bavani M.M, Dabiri F, Entezar-Mahdi R, et al. Fauna and larval habitats of mosquitoes (Diptera: Culicidae) of West Azerbaijan Province, northwestern Iran. J Arthropod-Borne Dis. 2014; 8(2): 163-173.
  15. Nikookar S, Moosa-Kazemi S, Oshaghi M, Yaghoobi-Ershadi M, Vatandoost H, Kianinasab A. Species composition and diversity of mosquitoes in Neka County, Mazandaran Province, northern Iran. ran J Arthropod Borne Dis. 2010; 4(2): 26-34. PMID: 22808397; PMCID: PMC3385557. 
  16. Paksa A, Sedaghat MM, Vatandoost H, Yaghoobi-Ershadi MR, Moosa-Kazemi SH, Hazratian T, et al. Biodiversity of Mosquitoes (Diptera: Culicidae) with Emphasis on Potential Arbovirus Vectors in East Azerbaijan Province, Northwestern Iran. J Arthropod-Borne Dis. 2019; 13(1): 62-75. doi: 10.18502/jad.v13i1.933.
  17. Zaim M. The distribution and larval habitat characteristics of Iranian Culicinae. J Am Mosq Control Assoc. 1987; 3(4): 568-73. PMID: 2904967.
  18. Farhadinejad R, Mousavi M, Amraee K. The species composition of mosquitoes (Diptera: Culicidae) in the Mahshahr district, Khuzestan province, southwest of Iran. Archives of Razi Institute. 2015; 70(2): 89-95. doi: 10.7508/ari.2015.02.003.
  19. Soltanbeiglu S, Vahedi M, Mohammadi Bavani M, Chavshin A.R. Molecular characterisation of Cytochrome oxidase I and internal transcribed Spacer 2 fragments of Culiseta longiareolata. Turkiye Parazitol Derg. 2020; 44(4): 191-196. doi: 4274/tpd.galenos.2020.6886.
  20. Paksa A, Vahedi M, Yousefi S, Saberi N, Rahimi S. Biodiversity of mosquitoes (Diptera: Culicidae), vectors of important arboviral diseases at different altitudes in the central part of Iran. Turk J Zool. 2023; 47(2):111-119. doi: 10.55730/1300-0179.3121.
  21. Moosa-Kazemi SH, Zahirnia AH, Sharifi F, Davari B. The fauna and ecology of mosquitoes (Diptera: Culicidae) in Western Iran. J Arthropod-Borne Dis. 2015; 9(1): 49-59.
  22. Aldemir A, Bosgelmez A. Population dynamics of adults and immature stages of mosquitoes (Diptera: Culicidae) in Gölbaşı District, Ankara. Turk J Zool. 2006; 30(1): 9-17.
  23. Gould E, Patterson J, Higgs S, Remi Charrel R, Xavier de Lamballerie. Emerging arboviruses: Why today? One Health. 2017; 4:1-13. doi: 10.1016/j.onehlt. 2017.06.001.
  24. Rizzoli A, Lca Bolzoni L, A Chadwick E, Capelli G, Montarsi F, Grisenti M, et al. Understanding West Nile virus ecology in Europe: Culex pipiens host feeding preference in a hotspot of virus emergence. Parasites & Vectors. 2015; 8: 213-226.
  25. Napp S, Petrić D, Busquets West Nile virus and other mosquito-borne viruses present in Eastern Europe. Pathog Glob Health. 2018; 112(5): 233-248. doi: 10.1080/20477724.2018.1483567. PMID: 29979950; PMCID: PMC6225508.
  26. Leggewie M, Badusche M, Rudolf  M, Jansen S, Börstler J, Krumkamp Culex pipiens and Culex torrentium populations from Central Europe are susceptible to West Nile virus infection. One Health. 2016; 2: 88-94. doi: 10.1016/j.onehlt.2016.04.001.   
  27. Komar N. West Nile Virus: Epidemiology and Ecology in North America. Adv Virus Res. 2003: 61: 185-234. doi: 10.1016/s0065-3527(03)61005-5. PMID: 14714433.
  28. Benjelloun A, Harra El, Calistri P, Loutfi C, Kabbaj H, Conte A, et al. Seroprevalence of West Nile virus in horses in different Moroccan regions. Vet Med Sci. 2017; 3(4): 198-207. doi: 1002/vms3.71. PMID: 29152314; PMCID: PMC5677775.  
  29. Bagheri M, Terenius O, Oshaghi MA, Motazakker M, Asgari S, Dabiri F, et al. West Nile Virus in Mosquitoes of Iranian Wetlands . Vector Borne Zoonotic Dis. 2015; 15:750-4. doi: 10.1089/vbz.2015.1778. PMID: 26565610.
  30. Fereidouni SR, Ziegler U, Linke S, Niedrig M, Modirrousta H, Hoffmann B, et al. West Nile virus monitoring in migrating and resident water birds in Iran: are common coots the main reservoirs of the virus in wetlands? Vector Borne Zoonotic Dis. 2011; 11(10): 1377-81. doi: 10.1089/vbz.2010.0244. PMID:
  31. Komar N. West Nile virus surveillance using sentinel birds. Annals of the New York Ann N Y Acad Sci. 2001; 951: 58-73. doi: 10.1111/j.1749-6632. 2001.tb02685. x. PMID: 11797805.
  32. Shahhosseini N, Chinikar S,  Moosa-Kazemi SH, Sedaghat MM, Kayedi MH, Lühken R, et al. West Nile Virus lineage-2 in Culex specimens from Iran. Trop Med Int Health. 2017; 22(10): 1343-1349. doi: 10.1111/tmi.12935. PMID: 28746985.
  33. Mavridis K, Fotakis E, Kioulos I, Mpellou S, Konstantas S, Varela E, et al. Detection of West Nile Virus–Lineage 2 in Culex pipiens mosquitoes, associated with disease outbreak in Greece, 2017. Acta Trop. 2018; 182: 64-68. doi: 10.1016/j.actatropica.2018.02.024. PMID: 29474832.
  34. Assaid N, Mousson L, Moutailler S, Arich S, Akarid K, Monier M, et al. Evidence of circulation of West Nile virus in Culex pipiens mosquitoes and horses in Morocco. Acta Trop. 2020; 205: 105414. doi: 10.1016/j.actatropica.2020.105414. PMID: 32088277.
  35. Tantely LM, Cêtre-Sossah C, Rakotondranaivo T, Cardinale E, Boyer S. Population dynamics of mosquito species in a West Nile virus endemic area in Madagascar. Parasite. 2017; 24(3). doi: 10.1051/parasite/2017005.
  36. Schuffenecker S, Iteman I, Michault A, Murri S, Frangeul L, Vaney MC, et al. Genome Microevolution of Chikungunya Viruses Causing the Indian Ocean Outbreak. PLoS Med. 2006; 3(7): e263. doi: 1371/journal.pmed.0030263. PMID: 16700631; PMCID: PMC1463904.
  37. Nelms BM, Macedo P, Kothera L, Savage H, Reisen WK. Overwintering Biology of Culex (Diptera: Culicidae) Mosquitoes in the Sacramento Valley of California. J Med Entomol. 2013; 50(4): 773-90. doi: 10.1603/me12280. PMID: 23926775; PMCID: PMC3920460.
  38. Azari-Hamidian SH. Larval Habitat Characteristics of Mosquitoes of the Genus Culex (Diptera: Culicidae) in Guilan Province, Iran. Iranian J Arthropod-Borne Dis. 2007; 1(1): 9-20.
  39. Moosa-Kazemi SH, Vatandoost H, Nikookar H, Fathian M. Culicinae (Diptera: Culicidae) Mosquitoes in Chabahar County, Sistan and Baluchistan Province, Southeastern Iran. Iranian J Arthropod-Borne Dis. 2009; 3(1): 29-35. PMID: 22808369; PMCID: PMC3385524.