Document Type : Original Article
Authors
1 Dalla Lana School of Public Health, University of Toronto, 223 College Street (Gage Building), Toronto, ON, Canada
2 Department of Occupational Health and Safety, Research Center for Health Sciences, Institute of Health, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
3 Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
4 Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
5 Department of Occupational Health and Safety, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
Abstract
Background: Several epidemiological studies have reported associations between high levels of lead exposure and oxidative stress (OS). However, research on the effects of low-level lead exposure remains limited. This study aims to assess the relationship between OS parameters and exposure to low concentrations of lead dust in mine workers.
Methods: This cross-sectional study evaluated 73 lead-exposed workers and 70 age- and sex-matched non-exposed individuals. Demographic data and occupational and medical history were collected through questionnaires. Workers’ exposure to lead dust was assessed by air monitoring, and blood lead levels (BLLs) were calculated based on inhalation exposure. Blood samples were collected to determine OS parameters. Data were analyzed using SPSS version 21.0.
Results: The mean exposure of workers to lead dust was 24 μg/ m³ (range: 1.5 to 185 μg/m³), which complied with the OSHAPEL and ACGIH TLV-TWA standards for lead dust. The BLL in the exposed workers was found to be 45.47 μg/dL. A significant association was observed between the SOD/MDA ratio and exposure to lead dust. Additionally, a borderline negative association between lead exposure and superoxide dismutase (SOD) activity was found. A significant relationship was noted between workers’ BMI and OS biomarkers.
Conclusion: This study’s findings suggest that chronic exposure to lead dust may affect OS biomarkers, even at concentrations below the current OSHA-PEL and ACGIH TLV-TWA.
Highlights
Fateme Kooshki (Google Scholar)
Esmaeel Soleimani (Google Scholar)
Keywords
- Neghab M, Soleimani E, Rajaeefard A. Assessment of occupational exposure to n-hexane: a study in shoe making workshops. Res J Environ Toxicol. 2011;5(5):293-7. doi: 10.3923/rjet.2011.293.297. PMID: 21867222; PMCID: PMC3209835.
- Behnami F, Yousefinejad S, Jafari S, Neghab M, Soleimani E. Assessment of respiratory exposure to cypermethrin among farmers and farm workers of Shiraz, Iran. Environ Monit Assess. 2021;193:1-10. doi: 10.1007/s10661-021-8917-7. PMID: 33371725; PMCID: PMC7798087.
- Sohrabi Y, Sabet S, Yousefinejad S, Rahimian F, Aryaie M, Soleimani E, et al. Pulmonary function and respiratory symptoms in workers exposed to respirable silica dust: A historical cohort study. Heliyon. 2022;8(11):e11675. doi: 10.1016/j.heliyon.2022.e11675. PMID: 36415784; PMCID: PMC9706212.
- Rahimian F, Najimi M, Khodadadi H, Vardanjani HM, Yousefinejad S, Soleimani E. Respiratory impairments in workers of a modern livestock complex: A 6-year longitudinal study. Toxicol Anal Clin. 2023;35(2):123-9. doi: 10.1016/j.toxrep.2023.07.006. PMID: 37104992; PMCID: PMC10253091.
- Neghab M, Amiri F, Soleimani E, Yousefinejad S, Hassanzadeh J. Toxic responses of the liver and kidneys following occupational exposure to anesthetic gases. EXCLI J. 2020;19:418-27. doi: 10.17179/excli2020-2816. PMID: 33232859; PMCID: PMC7679871.
- Neghab M, Mirzaei A, Jalilian H, Jahangiri M, Zahedi J, Yousefinejad S. Effects of low-level occupational exposure to ammonia on hematological parameters and kidney function. Int J Occup Environ Med. 2019;10(2):80-8. doi: 10.15171/ijoem.2019.1603. PMID: 31748948; PMCID: PMC6853445.
- Kooshki F, Neghab M, Soleimani E, Hasanzadeh J. Low-level exposure to lead dust in unusual work schedules and hematologic, renal, and hepatic parameters. Toxicol Appl Pharmacol. 2021;415:115448. doi: 10.1016/j.taap.2021.115448. PMID: 34379609; PMCID: PMC8488406.
- Vaziri N, Khan M. Interplay of reactive oxygen species and nitric oxide in the pathogenesis of experimental lead-induced hypertension. Clin Exp Pharmacol. 2007;34(9):920-5. doi: 10.1111/j.1440-1681.2007.04653.x. PMID: 17853463.
- Verstraeten SV, Aimo L, Oteiza PI. Aluminium and lead: molecular mechanisms of brain toxicity. Arch Toxicol. 2008;82:789-802. doi: 10.1007/s00204-008-0312-4. PMID: 18512145.
- Soleimani E, Moghadam RH, Ranjbar A. Occupational exposure to chemicals and oxidative toxic stress. Toxicol Environ Health Sci. 2015;7:1-24. doi: 10.1007/s13530-015-0320-9. PMID: 26153169.
- Sugawara E, Nakamura K, Miyake T, Fukumura A, Seki Y. Lipid peroxidation and concentration of glutathione in erythrocytes from workers exposed to lead. Occup Environ Med. 1991;48(4):239-42. doi: 10.1136/oem.48.4.239. PMID: 2061790.
- Schafer JH, Glass TA, Bressler J, Todd AC, Schwartz BS. Blood lead is a predictor of homocysteine levels in a population-based study of older adults. Environ Health Perspect. 2005;113(1):31-5. doi: 10.1289/ehp.7411. PMID: 15626693; PMCID: PMC1241862.
- Ahamed M, Siddiqui M. Low level lead exposure and oxidative stress: current opinions. Clin Chim Acta. 2007;383(1-2):57-64. doi: 10.1016/j.cca.2007.04.011. PMID: 17574678.
- Patil AJ, Bhagwat VR, Patil JA, Dongre NN, Ambekar JG, Jailkhani R, et al. Effect of lead (Pb) exposure on the activity of superoxide dismutase and catalase in battery manufacturing workers (BMW) of Western Maharashtra (India) with reference to heme biosynthesis. Int J Environ Res Public Health. 2006;3(4):329-37. doi: 10.3390/ijerph2006030033. PMID: 19026292; PMCID: PMC1806327.
- Lopes ACBA, Peixe TS, Mesas AE, Paoliello MM. Lead exposure and oxidative stress: a systematic review. Rev Environ Contam Toxicol. 2016;193:193-238. doi: 10.1007/978-3-319-30703-5_7. PMID: 27185523.
- Giera M, Lingeman H, Niessen WM. Recent advancements in the LC-and GC-based analysis of malondialdehyde (MDA): a brief overview. Chromatogr. 2012;75:433-40. doi: 10.1007/s10337-012-2219-9.
- Fowler BA, Whittaker MH, Lipsky M, Wang G, Chen X-Q. Oxidative stress induced by lead, cadmium and arsenic mixtures: 30-day, 90-day, and 180-day drinking water studies in rats: an overview. Biometals. 2004;17:567-8. doi: 10.1023/B:BIOM.0000044111.78515.f4. PMID: 15565433.
- Lead by flame AAS: Method 7082. NIOSH Manual of Analytical Methods (NMAM), Fourth Edition. USA: The National Institute for Occupational Safety and Health; 1994.
- Drolet D. Guide for the adjustment of permissible exposure values (PEVs) for unusual work schedules. 2008.
- Richter ED, Yaffe Y, Gruener N. Air and blood lead levels in a battery factory. Environ Res. 1979;20(1):87-98. doi: 10.1016/0013-9351(79)90009-6. PMID: 518788.
- Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95(2):351-8. doi: 10.1016/0003-2697(79)90738-3.
- Rabinowitz MB. Toxicokinetics of bone lead. Environ Health Perspect. 1991;91:33-7. doi: 10.1289/ehp.919133.
- Toxicological profile for lead. Atlanta, GA: US Department of Health and Human Services, Agency for Toxic Substances and Disease Registry (ATSDR), Public Health Service; 2006.
- Mahaffey KR, Annest JL. Association of erythrocyte protoporphyrin with blood lead level and iron status in the second National Health and Nutrition Examination Survey, 1976–1980. Environ Res. 1986;41(1):327-38. doi: 10.1016/0013-9351(86)90044-0.
- Blake K, Mann M. Effect of calcium and phosphorus on the gastrointestinal absorption of 203Pb in man. Environ Res. 1983;30(1):188-94. doi: 10.1016/0013-9351(83)90112-9.
- Kasperczyk S, Dobrakowski M, Kasperczyk A, Machnik G, Birkner E. Effect of N-acetylcysteine administration on the expression and activities of antioxidant enzymes and the malondialdehyde level in the blood of lead-exposed workers. Environ Toxicol Pharmacol. 2014;37(2):638-47. doi: 10.1016/j.etap.2014.02.007. PMID: 24636809.
- Kasperczyk S, Dobrakowski M, Kasperczyk A, Machnik G, Birkner E. Effect of N-acetylcysteine administration on the expression and activities of antioxidant enzymes and the malondialdehyde level in the blood of lead-exposed workers. Environ Toxicol Pharmacol. 2014;37(2):638-47. doi: 10.1016/j.etap.2014.02.007. PMID: 24636809.
- Dobrakowski M, Pawlas N, Hudziec E, Kozłowska A, Mikołajczyk A, Birkner E, et al. Glutathione, glutathione-related enzymes, and oxidative stress in individuals with subacute occupational exposure to lead. Environ Toxicol Pharmacol. 2016;45:235-40. doi: 10.1016/j.etap.2016.06.013. PMID: 27422210.
- Moro AM, Charão M, Brucker N, Bulcão R, Freitas F, Guerreiro G, et al. Effects of low-level exposure to xenobiotics present in paints on oxidative stress in workers. Sci Total Environ. 2010;408(20):4461-7. doi: 10.1016/j.scitotenv.2010.06.030. PMID: 20674561.
- Ighodaro O, Akinloye O. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria J Med. 2018;54(4):287-93. doi: 10.1016/j.ajme.2017.10.001.
- Qu W, Du G-L, Feng B, Shao H. Effects of oxidative stress on blood pressure and electrocardiogram findings in workers with occupational exposure to lead. J Int Med Res. 2019;47(6):2461-70. doi: 10.1177/0300060519848555. PMID: 31185083.
- Saxena G, Flora S. Changes in brain biogenic amines and haem biosynthesis and their response to combined administration of succimers and Centella asiatica in lead poisoned rats. J Pharm Pharmacol. 2006;58(4):547-59. doi: 10.1211/jpp.58.4.0005. PMID: 16750945.
- Ercal N, Gurer-Orhan H, Aykin-Burns N. Toxic metals and oxidative stress part I: mechanisms involved in metal-induced oxidative damage. Curr Top Med Chem. 2001;1(6):529-39. doi: 10.2174/1568026013393048.
- Yin S-T, Tang M-L, Su L, Chen L, Hu P, Wang H-L, et al. Effects of Epigallocatechin-3-gallate on lead-induced oxidative damage. Toxicology. 2008;249(1):45-54. doi: 10.1016/j.tox.2008.05.011. PMID: 18514713.
- Öktem F, Arslan MK, Dündar B, Delibas N, Gültepe M, Ergürhan Ilhan I. Renal effects and erythrocyte oxidative stress in long-term low-level lead-exposed adolescent workers in auto repair workshops. Arch Toxicol. 2004;78:681-7. doi: 10.1007/s00204-004-0573-1. PMID: 15137325.
- Shraideh Z, Badran D, Hunaiti A, Battah A. Association between occupational lead exposure and plasma levels of selected oxidative stress related parameters in Jordanian automobile workers. Int J Occup Med Environ Health. 2018;31(4):517-25. doi: 10.13075/ijomeh.1896.01201. PMID: 30344470.
- Li GJ, Zhang L-L, Lu L, Wu P, Zheng W. Occupational exposure to welding fume among welders: alterations of manganese, iron, zinc, copper, and lead in body fluids and the oxidative stress status. J Occup Environ Med. 2004;46(3):241. doi: 10.1097/01.jom.0000129385.04251.8c.
- Mohammad IK, Mahdi AA, Raviraja A, Najmul I, Iqbal A, Thuppil V. Oxidative stress in painters exposed to low lead levels. Arh Hig Rada Toksikol. 2008;59(3):161. doi: 10.2478/v10004-008-0014-5. PMID: 18758780.
- Mylroie AA, Collins H, Umbles C, Kyle J. Erythrocyte superoxide dismutase activity and other parameters of copper status in rats ingesting lead acetate. Toxicol Appl Pharmacol. 1986;82(3):512-20. doi: 10.1016/S0041-008X(86)80106-8.
- Wonisch W, Falk A, Sundl I, Winklhofer-Roob BM, Lindschinger M. Oxidative stress increases continuously with BMI and age with unfavourable profiles in males. Aging Male. 2012;15(3):159-65. doi: 10.3109/13685538.2012.697777. PMID: 22862794.