Document Type : Original Article

Authors

1 Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran

2 Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran

3 Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran

10.30476/jhsss.2024.100664.1846

Abstract

Background: This study evaluates the seasonal and annual variations of PM₂.₅, PM₁₀, and SO₂ concentrations in Tehran’s ambient air from 2019 to 2021 and assesses their associated health risks.
Methods: Non-carcinogenic health risks were quantified using the U.S. Environmental Protection Agency (EPA) methodology. Sobol sensitivity analysis was conducted in R (version 4.1.2), andArcGIS (version 10.8.1) was used to map the spatial distribution of pollutants.
Results: The annual mean concentrations of PM₂.₅, PM₁₀, and SO₂ ranged from 28.24–32.34 μg/m³, 69.57–82.22 μg/m³, and 14.94–17.98 μg/m³, respectively, exceeding WHO air quality guidelines. PM₂.₅ and SO₂ levels were highest in the west and southwest, while PM₁₀ was most prevalent in the east and northeast. The hazard quotient (HQ) for PM₂.₅ and PM₁₀ exceeded 1 in 8- and 12-hour exposure scenarios, indicating significant health risks. However, the HQ for SO₂ remained below 1 across all exposure durations, suggesting no immediate health threat. At 3-hour exposures, the HQ for PM₂.₅ and PM₁₀ was below 1, underscoring the role of exposure duration in health risks. Sobol sensitivity analysis identified PM₂.₅ concentration as the most influential factor affecting health risk.
Conclusion: The findings highlight the urgent need for regulatory interventions to mitigate PM₂.₅ and PM₁₀ pollution in Tehran, particularly in high-exposure regions. Effective control measures should prioritize reducing emissions to protect public health.

Highlights

Fahimeh Ahmadian (PupMed)

Abooalfazl Azhdarpoor (Google Scholar)

Keywords

  1. Ahmadian F, Rajabi S, Maleky S, Baghapour MA. Spatiotemporal analysis of airborne pollutants and health risks in Mashhad metropolis: enhanced insights through sensitivity analysis and machine learning. Environ Geochem Health. 2024 Dec 26;47(2):34. doi: 10.1007/s10653-024-02332-5. PMID: 39724450.
  2. Hassan Bhat T, Jiawen G, Farzaneh H. Air Pollution Health Risk Assessment (AP-HRA), Principles and Applications. Int J Environ Res Public Health. 2021 Feb 17;18(4):1935. doi: 10.3390/ijerph18041935. PMID: 33671274; PMCID: PMC7922529.
  3. Khafaie MA, Ojha A, Salvi SS, Yajnik CS. Methodological approach in air pollution health effects studies. Journal of Air Pollution and Health. 2016;1(3):219-26.
  4. Malakootian M, Maleki S, Rajabi S, Hasanzadeh F, Nasiri A, Mohammdi A, Faraji M. Source identification, spatial distribution and ozone formation potential of benzene, toluene, ethylbenzene, and xylene (BTEX) emissions in Zarand, an industrial city of southeastern Iran. Journal of Air Pollution and Health. 2022;7(3):217-32. doi:10.18502/japh.v7i3.10537
  5. Hashemi M, Maleky S, Rajabi S. Nanoadsorbents in Air Pollution Control. InAdsorption through Advanced Nanoscale Materials 2023 Jan 1 (pp. 289-324). Elsevier. doi:10.1016/B978-0-443-18456-7.00013-4
  6. Bayat R, Ashrafi K, Motlagh MS, Hassanvand MS, Daroudi R, Fink G, et al. Health impact and related cost of ambient air pollution in Tehran. Environ Res. 2019;176:108547. doi: 10.1016/j.envres.2019.108547. Epub 2019 Jun 19. PMID: 31247432.
  7. Sunarsih E, Suheryanto S, Mutahar R, Garmini R. Risk assesment of air pollution exposure (NO2, SO2, total suspended particulate, and particulate matter 10 micron) and smoking habits on the lung function of bus drivers in Palembang City. Kesmas: Jurnal Kesehatan Masyarakat Nasional (National Public Health Journal). 2019;13(4):202-6. doi:10.21109/kesmas.v13i4.1923
  8. Hadian M, Raeissi P, Harati Khalilabad T. The economic burden of mortality and morbidity due to air pollution in Tehran, Iran: a systematic review. Air Quality, Atmosphere & Health. 2020;13(8):1001-11. doi:10.1007/s11869-020-00861-3.
  9. Khaniabadi YO, Sicard P, Takdastan A, Hopke PK, Taiwo AM, Khaniabadi FO, et al. Mortality and morbidity due to ambient air pollution in Iran. Clinical Epidemiology and Global Health. 2019;7(2):222-7. doi:10.1016/j.cegh.2018.06.006.
  10. Sánchez-Piñero J, Moreda-Piñeiro J, Concha-Graña E, Fernández-Amado M, Muniategui-Lorenzo S, López-Mahía P. Inhalation bioaccessibility estimation of polycyclic aromatic hydrocarbons from atmospheric particulate matter (PM10): Influence of PM10 composition and health risk assessment. Chemosphere. 2021;263:127847. doi: 10.1016/j.chemosphere.2020.127847. Epub 2020 Aug 13. PMID: 32814136.
  11. Wambebe NM, Duan X. Air quality levels and health risk assessment of particulate matters in Abuja municipal area, Nigeria. Atmosphere. 2020;11(8):817. doi:10.3390/atmos11080817.
  12. Omidi Khaniabadi Y, Sicard P, Omidi Khaniabadi A, Mohammadinejad S, Keishams F, Takdastan A, et al. Air quality modeling for health risk assessment of ambient PM10, PM2. 5 and SO2 in Iran. Human and Ecological Risk Assessment: An International Journal. 2019;25(5):1298-310. doi:10.1080/10807039.2018.1487277.
  13. Sharma S, Chandra M, Kota SH. Health effects associated with PM 2.5: a systematic review. Current Pollution Reports. 2020;6:345-67.org/10.1007/s40726-020-00155-3.
  14. Hwang SH, Park WM, Park JB, Nam T. Characteristics of PM10 and CO2 concentrations on 100 underground subway station platforms in 2014 and 2015. Atmospheric environment. 2017;167:143-9. doi:10.1016/j.atmosenv.2017.08.019.
  15. Ebrahimi M, Qaderi F. Determination of the most effective control methods of SO2 pollution in Tehran based on adaptive neuro-fuzzy inference system. Chemosphere. 2021;263:128002. doi: 10.1016/j.chemosphere.2020.128002. PMID: 32846290.
  16. Wu Y, Li R, Cui L, Meng Y, Cheng H, Fu H. The high-resolution estimation of sulfur dioxide (SO2) concentration, health effect and monetary costs in Beijing. Chemosphere. 2020;241:125031. doi: 10.1016/j.chemosphere.2019.125031. Epub 2019 Oct 1. PMID: 31610459.
  17. Saygın M, Gonca T, Öztürk Ö, Has M, Çalışkan S, Has ZG, et al. To investigate the effects of air pollution (PM10 and SO2) on the respiratory diseases asthma and chronic obstructive pulmonary disease. Turk Thorac J. 2017 Apr;18(2):33-39. doi: 10.5152/TurkThoracJ.2017.16016. Epub 2017 May 15. PMID: 29404157; PMCID: PMC5783077.
  18. Gusti A. Health risk assessment of inhalation exposure to So2 and No2 among traders in a traditional market. Public Health of Indonesia. 2019;5(2):30-5. doi:10.36685/phi.v5i2.253.
  19. Rajabi S, Zarei MR, Karamoozian A, Mohammadpour A, Azhdarpoor A. Sobol sensitivity analysis for non-carcinogenic health risk assessment and water quality index for Kohgiluyeh and Boyer-Ahmad Province, Western Iran. Arabian Journal of Chemistry. 2022;15(12):104342. doi:10.1016/j.arabjc.2022.104342.
  20. Maleky S, Faraji M. BTEX in Ambient Air of Zarand, the Industrial City in Southeast of Iran: Concentration, Spatio-temporal Variation and Health Risk Assessment. Bull Environ Contam Toxicol. 2023 Aug 12;111(2):25. doi: 10.1007/s00128-023-03778-6. PMID: 37572109.
  21. Kermani M, Jonidi Jafari A, Gholami M, Arfaeinia H, Shahsavani A, Fanaei F. Characterization, possible sources and health risk assessment of PM2.5-bound Heavy Metals in the most industrial city of Iran. J Environ Health Sci Eng. 2021 Jan 15;19(1):151-163. doi: 10.1007/s40201-020-00589-3. PMID: 34150226; PMCID: PMC8172762.
  22. Nossent J, Elsen P, Bauwens W. Sobol’sensitivity analysis of a complex environmental model. Environmental Modelling & Software. 2011;26(12):1515-25. doi:10.1016/j.envsoft.2011.08.010.
  23. Torbatian S, Hoshyaripour A, Shahbazi H, Hosseini V. Air pollution trends in Tehran and their anthropogenic drivers. Atmospheric Pollution Research. 2020;11(3):429-42. doi:10.1016/j.apr.2019.11.015.
  24. Taksibi F, Khajehpour H, Saboohi Y. On the environmental effectiveness analysis of energy policies: A case study of air pollution in the megacity of Tehran. Sci Total Environ. 2020 Feb 25;705:135824. doi: 10.1016/j.scitotenv.2019.135824. Epub 2019 Nov 29. PMID: 31841906.
  25. Ramyar R, Zarghami E, Bryant M. Spatio-temporal planning of urban neighborhoods in the context of global climate change: Lessons for urban form design in Tehran, Iran. Sustainable Cities and Society. 2019;51:101554. doi:10.1016/j.scs.2019.101554.
  26. Delavar MR, Gholami A, Shiran GR, Rashidi Y, Nakhaeizadeh GR, Fedra K, et al. A novel method for improving air pollution prediction based on machine learning approaches: a case study applied to the capital city of Tehran. ISPRS International Journal of Geo-Information. 2019;8(2):99. doi:10.3390/ijgi8020099.
  27. Liu X, Wang Z, Bai H, Zhang S, Mu L, Peng L. Characteristics and health risk assessments of heavy metals in PM 2.5 in Taiyuan and Yuci college town, China. Air Quality, Atmosphere & Health. 2020;13:909-19. doi:10.1007/s11869-020-00860-4.
  28. Zhang J, Wu L, Fang X, Li F, Yang Z, Wang T, et al. Elemental composition and health risk assessment of PM10 and PM2. 5 in the roadside microenvironment in Tianjin, China. Aerosol and Air Quality Research. 2018;18(7):1817-27. doi:10.4209/aaqr.2017.10.0383.
  29. Organization WH. WHO global air quality guidelines: particulate matter (PM2. 5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide: World Health Organization; 2021.
  30. Yunesian M, Rostami R, Zarei A, Fazlzadeh M, Janjani H. Exposure to high levels of PM2.5 and PM10 in the metropolis of Tehran and the associated health risks during 2016–2017. Microchemical Journal. 2019;150:104174. doi:10.1016/j.microc.2019.104174.
  31. Matooane M, Diab R. Health risk assessment for sulfur dioxide pollution in South Durban, South Africa. Arch Environ Health. 2003 Dec;58(12):763-70. doi: 10.3200/AEOH.58.12.763-770. PMID: 15859511.
  32. Wu Y, Lu B, Zhu X, Wang A, Yang M, Gu S, et al. Seasonal variations, source apportionment, and health risk assessment of heavy metals in PM2.5 in Ningbo, China. Aerosol and Air Quality Research. 2019;19(9):2083-92. doi:10.4209/aaqr.2018.12.0452.
  33. Chalvatzaki E, Chatoutsidou SE, Lehtomäki H, Almeida SM, Eleftheriadis K, Hänninen O, et al. Characterization of human health risks from particulate air pollution in selected European cities. Atmosphere. 2019;10(2):96.org/10.3390/atmos10020096.
  34. Mbazima SJ. Health risk assessment of particulate matter 2.5 in an academic metallurgy workshop. Indoor Air. 2022 Sep;32(9):e13111. doi: 10.1111/ina.13111. PMID: 36168227; PMCID: PMC9825944.
  35. Karunanidhi D, Aravinthasamy P, Subramani T, Kumar D, Venkatesan G. Chromium contamination in groundwater and Sobol sensitivity model based human health risk evaluation from leather tanning industrial region of South India. Environ Res. 2021 Aug;199:111238. doi: 10.1016/j.envres.2021.111238. Epub 2021 May 17. PMID: 34015295.
  36. Kermani M, Jonidi Jafari A, Gholami M, Arfaeinia H, Shahsavani A, Fanaei F. Characterization, possible sources and health risk assessment of PM2.5-bound Heavy Metals in the most industrial city of Iran. J Environ Health Sci Eng. 2021 Jan 15;19(1):151-163. doi: 10.1007/s40201-020-00589-3. PMID: 34150226; PMCID: PMC8172762.
  37. Heger M, Sarraf M. Air pollution in Tehran: health costs, sources, and policies. World Bank; 2018 Apr.
  38. Bai L, Li C, Yu CW, He Z. Air pollution and health risk assessment in Northeastern China: A case study of Jilin Province. Indoor and Built Environment. 2021;30(10):1857-74. doi:10.1177/1420326X2097927.
  39. Khan MF, Latif MT, Saw WH, Amil N, Nadzir MM, Sahani M, et al. Fine particulate matter in the tropical environment: monsoonal effects, source apportionment, and health risk assessment. Atmospheric Chemistry and Physics. 2016;16(2):597-617. doi:10.5194/acp-16-597-2016, 2016.
  40. Heydari G, Taghizdeh F, Fazlzadeh M, Jafari AJ, Asadgol Z, Mehrizi EA, et al. Levels and health risk assessments of particulate matters (PM5 and PM10) in indoor/outdoor air of waterpipe cafés in Tehran, Iran. Environ Sci Pollut Res Int. 2019 Mar;26(7):7205-7215. doi: 10.1007/s11356-019-04202-5. Epub 2019 Jan 17. PMID: 30656582.
  41. Purohit P, Amann M, Kiesewetter G, Chaturvedi V, Rafaj P, Dholakia HH, et al. Mitigation pathways towards national ambient air quality standards in India. Environ Int. 2019 Dec;133(Pt A):105147. doi: 10.1016/j.envint.2019.105147. Epub 2019 Sep 10. PMID: 31518932.
  42. Zhang Q, Geng G. Impact of clean air action on PM 2.5 pollution in China. Springer; 2019. p. 1845-6. doi:10.1007/s11430-019-9531-4.
  43. Bozkurt Z, Üzmez ÖÖ, Döğeroğlu T, Artun G, Gaga EO. Atmospheric concentrations of SO2, NO2, ozone and VOCs in Düzce, Turkey using passive air samplers: sources, spatial and seasonal variations and health risk estimation. Atmospheric Pollution Research. 2018;9(6):1146-56. doi:10.1016/j.apr.2018.05.001.
  44. Farhadi R, Hadavifar M, Moeinaddini M, Amintoosi M. Prediction of CO and PM10 in Cold and Warm Seasons and Survey of the Effect of Instability Indices on Contaminants Using Artificial Neural Network: A Case Study in Tehran City. Iranian (Iranica) Journal of Energy & Environment. 2022;13(1):71-8. doi:10.5829/ijee.2022.13.01.08.
  45. Kim K-H, Shon Z-H. Long-term changes in PM10 levels in urban air in relation with air quality control efforts. Atmospheric environment. 2011;45(19):3309-17. doi:10.1016/j.atmosenv.2011.03.033.
  46. Givehchi R, Arhami M, Tajrishy M. Contribution of the Middle Eastern dust source areas to PM10 levels in urban receptors: Case study of Tehran, Iran. Atmospheric environment. 2013;75:287-95. doi:10.1016/j.atmosenv.2013.04.039.
  47. Hadei M, Hopke PK, Nazari SSH, Yarahmadi M, Shahsavani A, Alipour MR. Estimation of mortality and hospital admissions attributed to criteria air pollutants in Tehran metropolis, Iran (2013-2016). Aerosol and air quality research. 2017;17(10):2474-81. doi: 10.4209/aaqr.2017.04.0128.
  48. Khuzestani RB, Taheri A, Yeganeh B. Long-range transport of sulfur dioxide emissions from external sources to Tehran. Urban Climate. 2023;49:101445. doi:10.1016/j.uclim.2023.101445.
  49. Ghaffarpasand O, Nadi S, Shalamzari ZD. Short-term effects of anthropogenic/natural activities on the Tehran criteria air pollutants: Source apportionment and spatiotemporal variation. Building and Environment. 2020;186:107298. doi:10.1016/j.buildenv.2020.107298.
  50. Naddafi K, Hassanvand MS, Yunesian M, Momeniha F, Nabizadeh R, Faridi S, et al. Health impact assessment of air pollution in megacity of Tehran, Iran. Iranian J Environ Health Sci Eng. 2012 Dec 17;9(1):28. doi: 10.1186/1735-2746-9-28. PMID: 23369114; PMCID: PMC3561072.
  51. Buters J, Clot B, Galán C, Gehrig R, Gilge S, Hentges F, et al. Automatic detection of airborne pollen: an overview. Aerobiologia. 2022:1-25. doi:10.1007/s10453-022-09750-x.
  52. Yan H, Li Q, Feng K, Zhang L. The characteristics of PM emissions from construction sites during the earthwork and foundation stages: an empirical study evidence. Environmental Science and Pollution Research. 2023;30(22):62716-32. doi:10.1007/s11356-023-26494-4.
  53. Yousefian F, Faridi S, Azimi F, Aghaei M, Shamsipour M, Yaghmaeian K, et al. Temporal variations of ambient air pollutants and meteorological influences on their concentrations in Tehran during 2012-2017. Sci Rep. 2020 Jan 15;10(1):292. doi: 10.1038/s41598-019-56578-6. PMID: 31941892; PMCID: PMC6962207.
  54. Ali-Taleshi MS, Moeinaddini M, Riyahi Bakhtiari A, Feiznia S, Squizzato S, Bourliva A. A one-year monitoring of spatiotemporal variations of PM5-bound PAHs in Tehran, Iran: Source apportionment, local and regional sources origins and source-specific cancer risk assessment. Environ Pollut. 2021 Apr 1;274:115883. doi: 10.1016/j.envpol.2020.115883. Epub 2020 Nov 6. PMID: 33189444.
  55. de Oliveira BF, Ignotti E, Artaxo P, Saldiva PH, Junger WL, Hacon S. Risk assessment of PM(2.5) to child residents in Brazilian Amazon region with biofuel production. Environ Health. 2012 Sep 14;11:64. doi: 10.1186/1476-069X-11-64. PMID: 22978271; PMCID: PMC3465199.
  56. Li Y, Zhang Z, Liu H, Zhou H, Fan Z, Lin M, et al. Characteristics, sources and health risk assessment of toxic heavy metals in PM2.5 at a megacity of southwest China. Environ Geochem Health. 2016 Apr;38(2):353-62. doi: 10.1007/s10653-015-9722-z. Epub 2015 Jun 6. PMID: 26048341.
  57. Kermani M, Jafari AJ, Rezaei R, sadat Sakhaei F, Kahe TS, Dowlati M. Evaluation of chronic obstructive pulmonary disease attributed to atmospheric O3, NO2 and SO2 in Tehran city, from 2005 to 2014. Iranian Journal of Health, Safety and Environment. 2017;4(3):758-66.
  58. Raeisi A, Arfaeinia H, Seifi M, Shirzad-Siboni M, Keshtkar M, Dobaradaran S. Polycyclic aromatic hydrocarbons (PAHs) in coastal sediments from urban and industrial areas of Asaluyeh Harbor, Iran: distribution, potential source and ecological risk assessment. Water Sci Technol. 2016;74(4):957-73. doi: 10.2166/wst.2016.265. PMID: 27533870.
  59. Wu D, Wang Z, Chen J, Kong S, Fu X, Deng H, et al. Polycyclic aromatic hydrocarbons (PAHs) in atmospheric PM2. 5 and PM10 at a coal-based industrial city: Implication for PAH control at industrial agglomeration regions, China. Atmospheric Research. 2014;149:217-29. doi:10.1016/j.atmosres.2014.06.012.
  60. Kermani M, Asadgol Z, Gholami M, Jafari AJ, Shahsavani A, Goodarzi B, et al. Occurrence, spatial distribution, seasonal variations, potential sources, and inhalation-based health risk assessment of organic/inorganic pollutants in ambient air of Tehran. Environ Geochem Health. 2021 May;43(5):1983-2006. doi: 10.1007/s10653-020-00779-w. Epub 2020 Nov 20. PMID: 33216310.
  61. Ielpo P, Mangia C, Marra G, Comite V, Rizza U, Uricchio V, et al. Outdoor spatial distribution and indoor levels of NO2and SO2 in a high environmental risk site of the South Italy. Sci Total Environ. 2019 Jan 15;648:787-797. doi: 10.1016/j.scitotenv.2018.08.159. Epub 2018 Aug 14. PMID: 30138878.
  62. Gholampour A, Nabizadeh R, Hassanvand MS, Taghipour H, Rafee M, Alizadeh Z, et al. Characterization and source identification of trace elements in airborne particulates at urban and suburban atmospheres of Tabriz, Iran. Environ Sci Pollut Res Int. 2016 Jan;23(2):1703-13. doi: 10.1007/s11356-015-5413-7. Epub 2015 Sep 22. PMID: 26392093.
  63. Li L, Meng R, Lei Y, Wu S, Jiang Y. Human health risk assessment of heavy metals from PM5in China's 29 provincial capital cities. Environ Sci Pollut Res Int. 2022 Sep;29(42):63028-63040. doi: 10.1007/s11356-022-20229-7. Epub 2022 Apr 21. PMID: 35449325.
  64. Requia WJ, Higgins CD, Adams MD, Mohamed M, Koutrakis P. The health impacts of weekday traffic: A health risk assessment of PM5emissions during congested periods. Environ Int. 2018 Feb;111:164-176. doi: 10.1016/j.envint.2017.11.025. Epub 2017 Dec 20. PMID: 29220727.
  65. Dabbour L, Abdelhafez E, Hamdan M. Effect of climatology parameters on air pollution during COVID-19 pandemic in Jordan. Environ Res. 2021 Nov;202:111742. doi: 10.1016/j.envres.2021.111742. Epub 2021 Jul 21. PMID: 34302826; PMCID: PMC8294796.