Document Type : Original Article

Authors

1 Health Sciences Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran

2 Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran

3 Department of Epidemiology, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran

4 Non-Communicable Diseases Research Center, Department of Epidemiology, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran

10.30476/jhsss.2024.101252.1869

Abstract

Background: The thyroid gland cancer is the most common endocrine cancer worldwide. Although many occupational
and environmental exposures affect thyroid hormone levels, information about their association with thyroid cancer is limited. Therefore, this global ecological study was conducted from 1990 to 2019 to examine the associations between occupational exposures and thyroid cancer epidemiological markers.
Methods: Data for this global ecological study were extracted from the Global Burden of Disease (GBD) website from 1990 to 2019. The Pearson correlation coefficient was used to correlate occupational exposures, thyroid cancer incidence, and death rates. The final approach was to use the generalized additive model (GAM) for modeling. The data were analyzed using R software version 4.2.2. The significance level of 0.05 was considered.
Results: The average incidence and mortality for thyroid cancer were 2.48 and 0.64 per 100,000 populations, respectively. This generalized additive multiple model of cancer incidence showed that 1 unit of arsenic exposure increased the risk of thyroid cancer incidence and mortality by 6.8 and 1.97, respectively. The risk of developing thyroid cancer increases by 1.18 for each unit of benzene exposure. The modeling was adjusted for the variables of gender, sociodemographic features, and polycyclic aromatic hydrocarbons (PAHs).
Conclusion: The results of this study confirm the world’s first modeled hypothesis that there may be a relationship between occupational exposures (benzene, arsenic, and PAHs), and epidemiological indices of thyroid cancer. However, to reach causal conclusions, it is necessary to conduct epidemiological studies at the individual level by controlling confounding variables.

Highlights

Zahra Maleki (Google Scholar)

Haleh Ghaem (Google Scholar)

Keywords

  1. Kweon S-S, Shin M-H, Chung I-J, Kim Y-J, Choi J-S. Thyroid cancer is the most common cancer in women, based on the data from population-based cancer registries, South Korea. JJCO. 2013;43(10):1039-46. PUBMED PMID: 23894204. doi: 10.1093/jjco/hyt102.
  2. Pizzato M, Li M, Vignat J, Laversanne M, Singh D, La Vecchia C, et al. The epidemiological landscape of thyroid cancer worldwide: GLOBOCAN estimates for incidence and mortality rates in 2020. Lancet Diabetes Endocrinol. 2022;10(4):264-72. PUBMED PMID: 35271818. doi: 1016/S2213-8587(22)00035-3.
  3. Gianì F, Masto R, Trovato MA, Malandrino P, Russo M, Pellegriti G, et al. Heavy metals in the environment and thyroid cancer. Cancers. 2021;13(16):4052. PUBMED PMID: 34439207. PUBMED CENTRAL PMCID: PMC8393334. doi: 3390/cancers13164052.
  4. Pellegriti G, Frasca F, Regalbuto C, Squatrito S, Vigneri R. Worldwide increasing incidence of thyroid cancer: update on epidemiology and risk factors. J Cancer Epidemio. 2013;2013:965212. PUBMED PMID: 23737785. PUBMED CENTRAL PMCID: PMC3664492. doi: 10.1155/2013/965212.
  5. Aschebrook-Kilfoy B, Ward MH, Della Valle CT, Friesen MC. Occupation and thyroid cancer. Occup Environ Med. 2014;71(5):366-80. PUBMED PMID: 24604144. PUBMED CENTRAL PMCID: PMC4059396. doi: 1136/oemed-2013-101929.
  6. Berinde GM, Socaciu AI, Socaciu MA, Cozma A, Rajnoveanu AG, Petre GE, et al. Thyroid Cancer Diagnostics Related to Occupational and Environmental Risk Factors: An Integrated Risk Assessment Approach. Diagnostics. 2022;12(2):318. PUBMED PMID: 35204408. PUBMED CENTRAL PMCID: PMC8870864. doi: 3390/diagnostics12020318.
  7. Wong E, Ray R, Gao D, Wernli K, Li W, Fitzgibbons E, et al. Reproductive history, occupational exposures, and thyroid cancer risk among women textile workers in Shanghai, China. Int Arch Occup Environ Health. 2006;79:251-8. PUBMED PMID: 16220287. doi: 1007/s00420-005-0036-9.
  8. Nath A SS, Raychowdhury R. Does Arsenic Exposure Have a Role in Development of Thyroid Disease? Otolaryngol Res Re. 2021;4(1):72-4. doi: 36959/926/557.
  9. Choi JY, Huh D-A, Moon KW. Association between blood lead levels and metabolic syndrome considering the effect of the thyroid-stimulating hormone based on the 2013 Korea National health and nutrition examination survey. Plos one. 2020;15(12):e0244821. PUBMED PMID: 33382832. PUBMED CENTRAL PMCID: PMC7775085. doi: 1371/journal.pone.0244821.
  10. Park E, Kim S, Song S-H, Lee C-W, Kwon J-T, Lim MK, et al. Environmental exposure to cadmium and risk of thyroid cancer from national industrial complex areas: a population-based cohort study. Chemosphere. 2021;268:128819. PUBMED PMID: 33153845. doi: 1016/j.chemosphere.2020.128819.
  11. Liu B, Chen Y, Li S, Xu Y, Wang Y. Relationship between urinary metabolites of polycyclic aromatic hydrocarbons and risk of papillary thyroid carcinoma and nodular goiter: A case-control study in non-occupational populations. Environ Pollut. 2021;269:116158. PUBMED PMID: 33310200. doi: 1016/j.envpol.2020.116158.
  12. Yousif A AA. Effects of cadmium (Cd)and lead (Pb)on the structure and function of thyroid gland. Afr J Env Sci Technol. 2009;3:78-85. doi: 5897/AJEST08.157.
  13. Rivera-Buse JE, Patajalo-Villalta SJ, Donadi EA, Fernando Barbosa J, Magalhães PKR, Maciel LMZ. Impact of lead exposure on the thyroid glands of individuals living in high-or low-lead exposure areas. Medicine. 2023;102(12). PUBMED PMID: 36961188. PUBMED CENTRAL PMCID: PMC10036069. doi: 1097/MD.0000000000033292.
  14. Gharaibeh MY, Alzoubi KH, Khabour OF, Khader YS, Gharaibeh MA, Matarneh SK. Lead exposure among five distinct occupational groups: a comparative study. Pak J Pharm Sci. 2014;.27(1):39-43. PUBMED PMID: 24374433.
  15. Abdelouahab N, Mergler D, Takser L, Vanier C, St-Jean M, Baldwin M, et al. Gender differences in the effects of organochlorines, mercury, and lead on thyroid hormone levels in lakeside communities of Quebec (Canada). Environ Res. 2008; 107(3):380-92. PUBMED PMID: 18313043. doi: 1016/j.envres.2008.01.006.
  16. Erfurth EM, Gerhardsson L, Nilsson A, Rylander L, Schütz A, Skerfving S, et al. Effects of lead on the endocrine system in lead smelter workers. Arch Environ Health. 2001; 56(5):449-55. PUBMED PMID: 11777027. doi: 1080/00039890109604481.
  17. Rezaei M, Javadmoosavi SY, Mansouri B, Azadi NA, Mehrpour O, Nakhaee S. Thyroid dysfunction: how concentration of toxic and essential elements contribute to risk of hypothyroidism, hyperthyroidism, and thyroid cancer. Environ Sci Pollut Res Int. 2019; 26(35):35787-96. PUBMED PMID: 31701424. doi: 1007/s11356-019-06632-7.
  18. Li H, Li X, Liu J, Jin L, Yang F, Wang J, et al. Correlation between serum lead and thyroid diseases: papillary thyroid carcinoma, nodular goiter, and thyroid adenoma. Int J Environ Health Res. 2017; 27(5):409-19. PUBMED PMID: 28891673. doi: 1080/09603123.2017.1373273.
  19. Schober P, Boer C, Schwarte LAJA, analgesia. Correlation coefficients: appropriate use and interpretation. Anesth Analg. 2018;126(5):1763-8. PUBMED PMID: 29481436. doi: 10.1213/ANE.0000000000002864.
  20. Dehghan A, Khanjani N, Bahrampour A, Goudarzi G, Yunesian M. The relation between air pollution and respiratory deaths in Tehran, Iran-using generalized additive models. BMC pulmonary medicine. 2018;18(1):1-9. PUBMED PMID: 29558916. PUBMED CENTRAL PMCID: PMC5859399. doi: 1186/s12890-018-0613-9.
  21. Maleki Z, Hassanzadeh J, Ghaem H. Correlation between socioeconomic indices and epidemiological indices of thyroid cancer from 1990 to 2019 year: a global ecologic study. BMC Cancer. 2024; 24(1):467. PUBMED PMID: 38622568. PUBMED CENTRAL PMCID: PMC11017482. doi: 1186/s12885-024-12176-y.
  22. Maleki Z, Hassanzadeh J, Méndez-Arriaga F, Ghaem H. Environmental factors and incidence of thyroid cancer in the world (1990–2019): an ecological study. Environ Sci Pollut Res Int. 2023; 30(44):100072-7. PUBMED PMID: 37624503. doi: 1007/s11356-023-29435-3.
  23. Van Gerwen M, Alerte E, Alsen M, Little C, Sinclair C, Genden E. The role of heavy metals in thyroid cancer: A meta-analysis. J Trace Elem Med Biol. 2022;69:126900. PUBMED PMID: 34798515. doi: 10.1016/j.jtemb.2021.126900.
  24. Sabouhi M, Ali-Taleshi MS, Bourliva A, Nejadkoorki F, Squizzato S. Insights into the anthropogenic load and occupational health risk of heavy metals in floor dust of selected workplaces in an industrial city of Iran. Sci Total Environ. 2020;744:140762. PUBMED PMID: 32712416. doi: 10.1016/j.scitotenv.2020.140762.
  25. Fu Z, Xi S. The effects of heavy metals on human metabolism. Toxicol Mech Methods. 2020;30(3):167-76. PUBMED PMID: 31818169. doi: 1080/15376516.2019.1701594.
  26. Michalek IM, Martinsen JI, Weiderpass E, Hansen J, Sparen P, Tryggvadottir L, et al. Heavy metals, welding fumes, and other occupational exposures, and the risk of kidney cancer: A population-based nested case-control study in three Nordic countries. Environ Res. 2019;173:117-23. PUBMED PMID: 30903816. doi: 10.1016/j.envres.2019.03.023.
  27. Modica R, Benevento E, Colao A. Endocrine-disrupting chemicals (EDCs) and cancer: New perspectives on an old relationship. J Endocrinol Invest. 2023;46(4):667-77. PUBMED PMID: 36526827. doi: 10.1007/s40618-022-01983-4.
  28. Kitchin KT. Recent advances in arsenic carcinogenesis: modes of action, animal model systems, and methylated arsenic metabolites. Toxicol Appl Pharmacol. 2001;172(3):249-61. PUBMED PMID: 11312654. doi: 1006/taap.2001.9157.
  29. Patlevič P, Vašková J, Švorc Jr P, Vaško L, Švorc P. Reactive oxygen species and antioxidant defense in human gastrointestinal diseases. Integr. Med. Res. 2016;5(4):250-8. PUBMED PMID: 28462126. PUBMED CENTRAL PMCID: PMC5390420. doi: 10.1016/j.imr.2016.07.004.
  30. Aalami AH, Hoseinzadeh M, Hosseini Manesh P, Jiryai Sharahi A, Kargar Aliabadi E. Carcinogenic effects of heavy metals by inducing dysregulation of microRNAs: A review. Mol Biol Rep. 2022;49(12):12227-38. PUBMED PMID: 36269534. doi: 10.1007/s11033-022-07897-x.
  31. He J-l, Wu H-b, Hu W-l, Liu J-j, Zhang Q, Xiao W, et al. Exposure to multiple trace elements and thyroid cancer risk in Chinese adults: A case-control study. Int J Hyg Environ Health. 2022;246:114049. PUBMED PMID: 36279789. doi: 10.1016/j.ijheh.2022.114049.
  32. Tompa A. Theory and practice of primary cancer prevention. Magyar Onkologia. 2007;51(1):7-21. PUBMED PMID: 17417671.
  33. Bouges S, Daures J, Hebrard M. incidence of acute leukemias, lymphomas and thyroid cancers in children under 15 years, living around the Marcoule nuclear site from 1985 to 1995. Rev Epidemiol Sante Publique. 1999;47(3):205-17. PUBMED PMID: 10422115.
  34. De Craemer S, Croes K, Van Larebeke N, Sioen I, Schoeters G, Loots I, et al. Investigating unmetabolized polycyclic aromatic hydrocarbons in adolescents' urine as biomarkers of environmental exposure. Chemosphere. 2016;155:48-56. PUBMED PMID: 27105152. doi:10.1016/j.chemosphere.2016.04.017.
  35. Campo L, Hanchi M, Olgiati L, Polledri E, Consonni D, Zrafi I, et al. Biological monitoring of occupational exposure to polycyclic aromatic hydrocarbons at an electric steel foundry in Tunisia. Ann Occup Hyg. 2016;60(6):700-16. PUBMED PMID: 27206821. doi: 10.1093/annhyg/mew024.
  36. Mohammadyan M, Moosazadeh M, Borji A, Khanjani N, Rahimi Moghadam S. Investigation of occupational exposure to lead and its relation with blood lead levels in electrical solderers. Environ Monit Assess. 2019;191:1-9. PUBMED PMID: 30715599. doi: 1007/s10661-019-7258-x.
  37. Takayama Y, Masuzaki Y, Mizutani F, Iwata T, Maeda E, Tsukada M, et al. Associations between blood arsenic and urinary arsenic species concentrations as an exposure characterization tool. Sci Total Environ. 2021;750:141517. PUBMED PMID: 32829259. doi: 10.1016/j.scitotenv.2020.141517.