Document Type : Original Article

Authors

1 Department of Epidemiology and Biostatistics, Faculty of Health, Baqiyatallah University of Medical Sciences, Tehran, Iran

2 Division of Epidemiology and Zoonoses, Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran

3 Health Management Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran

4 Health Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran

10.30476/jhsss.2024.103559.1954

Abstract

Background: Syndromic surveillance is considered an effective tool used to detect early manifestations of biothreats and bioterrorismrelated diseases. Nowadays, a wide range of data sources has been used in biothreat syndromic surveillance systems. The current study was conducted to identify potential data sources and prioritize the most feasible ones for use in a syndromic surveillance system; we aimed to detect biothreats in Iran.
Methods: Mixed-method research was conducted. Potential data sources and health indicators were investigated and selected through an extensive literature review and interviews with experts. A TOPSIS model was used to prioritize the data sources based on timeliness, usefulness, representativeness and simplicity attributes.
Results: Healthcare providers for humans and animals, schools, pharmacies, laboratories, workplaces, and social media were found as data contributors for syndromic surveillance systems globally. Among identified data sources, a total of 13 health indicators were selected for prioritization. Emergency department (ED) visit chief complaints had priority over other health indicators and were found to be the most useful source for early detection of biothreats. It is followed by over-the-counter (OTC) drug sales and frequency of emergency visit records.
Conclusion: Syndromic surveillance based on different data sources is widely used across the world. The same approach is recommended for the Iranian healthcare system. Hospital-based clinical data platforms, such as EDs, have existed in the country for many years, and these data can be quickly incorporated into the biothreat syndromic surveillance system. For other data sources, such as OTC drug sales and school and work absenteeism, designing a platform for data registration is required.

Highlights

Seyyed Jamal Emami (Google Scholar)

Mojtaba Sepandi (Google Scholar)

Keywords

  1. Sharp SE, Loeffelholz M. Biothreat Agents. Wiley Online Library; 2011. doi:10.1128/9781555817381.ch14
  2. National Academies of Sciences and Medicine E. A Strategic Vision for Biological Threat Reduction: The US Department of Defense and Beyond. National Academies Press; 2020. doi: 10.17226/25681. PubMed PMID: 32496724,
  3. Kotwal A, Yadav A. Biothreat & one health: Current scenario & way forward. Indian J Med Res. 2021;153(3):257-263. doi: 10.4103/ijmr.IJMR_583_21. PubMed PMID: 33906987; PubMed Central PMCID: PMC8204829.
  4. Roehrig JT. West Nile virus in the United States—a historical perspective. Viruses. 2013;5(12):3088-3108. doi: 10.3390/v5123088. PubMed PMID: 24335779; PubMed Central PMCID: PMC3967162.
  5. Denison MR. Severe acute respiratory syndrome coronavirus pathogenesis, disease and vaccines: an update. Pediatr Infect Dis J. 2004;23(11):S207-S214. doi:10.1097/01.inf.0000144666.95284.05. PubMed PMID: 15577575.
  6. Coleman CM, Frieman MB. Emergence of the Middle East respiratory syndrome coronavirus. PLoS Pathog. 2013;9(9):e1003595. doi: 10.1371/journal.ppat.1003595.PuBMed PMID: 24039577; PubMed Central PMCID: PMC3764217.
  7. Wenger PN, Halperin W, Ziga E. Public health surveillance for bioterrorism. In: Beyond Anthrax: The Weaponization of Infectious Diseases. Springer; 2009:253-278. doi: 10.1007/978-1-59745-326-4_13. PubMed Central PMCID: PMC7176191.
  8. Duplantier AJ, Shurtleff AC, Miller C, Chiang CY, Panchal RG, Sunay M. Combating biothreat pathogens: ongoing efforts for countermeasure development and unique challenges. In: Drug Discovery Targeting Drug-Resistant Bacteria. Elsevier; 2020:171-222. doi: 10.1016/B978-0-12-818480-6.00007-2. PubMed Central PMCID: PMC7258707.
  9. Overview of Syndromic Surveillance what Is Syndromic Surveillance. Morb Mortal Wkly Rep. 2004;53:5-11.
  10. Mandl KD, Overhage JM, Wagner MM, Lober WB, Sebastiani P, Mostashari F, et al. Implementing syndromic surveillance: a practical guide informed by the early J Am Med Inform Assoc. 2004;11(2):141-150. doi:10.1197/jamia.M1356. PubMed PMID: 14633933; PubMed Central PMCID: PMC353021.
  11. Hunger I, Radosavljevic V, Belojevic G, Rotz LD. Biopreparedness and Public Health: Exploring Synergies. Springer; 2012. doi: 10.1007/978-94-007-5273-3.
  12. Tricco AC, Lillie E, Zarin W, O'Brien KK, Colquhoun H, Levac D, et al. PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation. Ann Intern Med. 2018;169(7):467-473. doi: 10.7326/M18-0850. PubMed PMID: 30178033.
  13. Arksey H, O’Malley L. Scoping studies: towards a methodological framework. Int J Soc Res Methodol. 2005;8(1):19-32. doi: 10.1080/1364557032000119616.
  14. Zaboli R, Tourani S, Seyedin SH, Manesh AO. Prioritizing the determinants of social-health inequality in Iran: a multiple attribute decision making application. Iran Red Crescent Med J. 2014;16(4). doi: 10.5812/ircmj. PubMed PMID: 24910792; PubMed Central PMCID: PMC4028765.
  15. Behzadian M, Otaghsara SK, Yazdani M, Ignatius J. A state-of the-art survey of TOPSIS applications. Expert Syst Appl. 2012;39(17):13051-13069. doi: 10.1016/j.eswa.2012.05.056.
  16. Kman NE, Bachmann DJ. Biosurveillance: A Review and Update. Adv Prev Med. 2012;2012:301408. doi:10.1155/2012/301408.
  17. Chen H, Zeng D, Yan P. Syndromic Surveillance Data Sources and Collection Strategies. In: Infectious Disease Informatics. Vol 21. ; 2010:33-48. doi:10.1007/978-1-4419-1278-7_3. PubMed Central PMCID: PMC7498891.
  18. Spector E, Zhang Y, Guo Y, Bost S, Yang X, Prosperi M, et al. Syndromic Surveillance Systems for Mass Gatherings: A Scoping Review. Int J Environ Res Public Health. 2022;19(8):4673. doi: 10.3390/ijerph19084673. PubMed PMID: 35457541; PubMed Central PMCID: PMC9026395.
  19. Travers D, Barnett C, Ising A, Waller A. Timeliness of emergency department diagnoses for syndromic surveillance. AMIA Annu Symp Proc. 2006;2006:769-773. PubMed PMID: 17238445; PubMed Central PMCID: PMC1839358.
  20. Hughes HE, Edeghere O, O’Brien SJ, Vivancos R, Elliot AJ. Emergency department syndromic surveillance systems: a systematic review. BMC Public Health. 2020;20(1):1891. doi:10.1186/s12889-020-09949-y. PubMed PMID: 33298000; PubMed Central PMCID: PMC7724621.
  21. Ansaldi F, Orsi A, Altomonte F, Bertone G, Parodi V, Carloni R, et al. Emergency department syndromic surveillance system for early detection of 5 syndromes: a pilot project in a reference teaching hospital in Genoa, Italy. J Prev Med Hyg. 2008;49(4):131-135. PubMed PMID: 19350960.
  22. Pivette M, Mueller JE, Crépey P, Bar-Hen A. Drug sales data analysis for outbreak detection of infectious diseases: a systematic literature review. BMC Infect Dis. 2014;14(1):604. doi:10.1186/s12879-014-0604-2. PubMed PMID: 25403237; PubMed Central PMCID: PMC4240820.
  23. Burkom H, Loschen W, Wojcik R, Holtry R, Punjabi M, Siwek M, et al. Electronic Surveillance System for the Early Notification of Community-Based Epidemics (ESSENCE): overview, components, and public health applications. JMIR public Heal Surveill. 2021;7(6):e26303. doi: 10.2196/26303. PubMed PMID: 34152271. PubMed Central PMCID: PMC8277331.
  24. Metzger K, Mostashari F, Kendall M. Comparison of Outpatient Visit and Emergency Department Data for Use in Syndromic Surveillance--New York City, 2001-2004. MMWR Morb Mortal Wkly Rep. 2005;54.
  25. Papadomanolakis-Pakis N, Maier A, van Dijk A, VanStone N, Moore KM. Development and assessment of a hospital admissions-based syndromic surveillance system for COVID-19 in Ontario, Canada: ACES Pandemic Tracker. BMC Public Health. 2021;21(1):1230. doi:10.1186/s12889-021-11303-9. PubMed PMID: 34174852; PubMed Central PMCID: PMC8233625.
  26. Donaldson AL, Hardstaff JL, Harris JP, Vivancos R, O’Brien SJ. School-based surveillance of acute infectious disease in children: a systematic review. BMC Infect Dis. 2021;21(1):744. doi:10.1186/s12879-021-06444-6. PubMed PMID: 34344304; PubMed Central PMCID: PMC8330200.
  27. Neuzil KM, Hohlbein C, Zhu Y. Illness among schoolchildren during influenza season: effect on school absenteeism, parental absenteeism from work, and secondary illness in families. Arch Pediatr Adolesc Med. 2002;156(10):986-991. doi: 10.1001/archpedi.156.10.986. PubMed PMID: 12361443.
  28. Cauchemez S, Bhattarai A, Marchbanks TL, Fagan RP, Ostroff S, Ferguson NM, et al. Role of social networks in shaping disease transmission during a community outbreak of 2009 H1N1 pandemic influenza. Proc Natl Acad Sci. 2011;108(7):2825-2830. doi: 10.1073/pnas.1008895108. PubMed PMID: 21282645; PubMed Central PMCID: PMC3041067.
  29. Gould DW, Walker D, Yoon PW. The Evolution of BioSense: Lessons Learned and Future Directions. Public Health Rep. 2017;132:7S-11S. doi:10.1177/0033354917706954. PubMed PMID: 28692386; PubMed Central PMCID: PMC5676506.
  30. Nexon E. Case Study– In: Biopreparedness and Public Health. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. 2013. doi: 10.1007/978-94-007-5273-3_9.
  31. Hogan WR, Tsui FC, Ivanov O, Gesteland PH, Grannis S, Overhage JM, et al. Detection of pediatric respiratory and diarrheal outbreaks from sales of over-the-counter electrolyte products. J Am Med Informatics Assoc. 2003;10(6):555-562. doi: 10.1197/jamia.M1377. PubMed PMID: 12925542; PubMed Central PMCID: PMC264433.