Document Type : Review Articles

Authors

1 Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran

2 Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran

3 Sepidan Bagherololoom Higher Education College, Shiraz University of Medical Sciences, Shiraz, Iran

10.30476/jhsss.2023.98791.1769

Abstract

Background: There is a lack of summarized reports of the relationship between dietary acid load (DAL) and bone health in post-menopausal women. Therefore, we aimed to design a systematic review and summarize eligible studies evaluating this association.
Methods: The present study was a systematic review. From the literature search on PubMed, Google Scholar, Scopus, and Medline until March 2020, six studies comprising 2 crosssectionals, 2 cohorts, and 2 randomized control trials were selected and included in this study.
Results: Four studies revealed a significant correlation between DAL and osteoporosis in post-menopausal women. In two reviewed studies, a significant association was seen between DAL and BMD, but in this association was not obtained in n another study. In addition, out of two randomized clinical studies (RCTs), one showed positive changes in bone markers when PRAL was decreased; however, no change was obtained in another RCT.
Conclusion: The present study showed that post-menopausal women, especially those with a fracture history, may have a greater susceptibility to osteoporosis because of the detrimental effect of dietary acidity. In addition, DAL rather than protein might be the main risk factor for bone loss in this population. It should be noted that insufficient calcium intake may exacerbate bone loss following a high protein–high acid ash diet in these women.

Highlights

Leila Moghari (PubMed)

Nasrin Sharifi (Google Scholar)

Keywords

  1. Shepherd AJ. An overview of osteoporosis. Altern Ther Health Med. 2004; 10(2):26-33. PMID: 15055091.
  2. Ji MX, Yu Q. Primary osteoporosis in postmenopausal women. Chronic Dis Transl Med. 2015; 1(1):9-13. doi: 10.1016/j.cdtm.2015.02.006. PMID: 29062981; PMCID: PMC5643776.
  3. Alswat KA. Gender Disparities in Osteoporosis. J Clin Med Res. 2017; 9(5):382-387. doi: 10.14740/jocmr2970w. PMID: 28392857; PMCID: PMC5380170.
  4. Jia T, Byberg L, Lindholm B, Larsson T, Lind L, Michaëlsson K, et al. Dietary acid load, kidney function, osteoporosis, and risk of fractures in elderly men and women. Osteoporos Int. 2015; 26(2):563-70. doi: 10.1007/s00198-014-2888-x. PMID: 25224295.
  5. López M, Moreno G, Lugo G, Marcano G. Dietary acid load in children with chronic kidney disease. Eur J Clin Nutr. 2020;74(Suppl 1):57-62. doi: 10.1038/s41430-020-0687-3. PMID: 32873958.
  6. Frassetto L, Banerjee T, Powe N, Sebastian A. Acid balance, dietary acid load, and bone effects—a controversial subject. Nutrients. 2018; 10(4):517. doi: 10.3390/nu10040517. PMID: 29690515; PMCID: PMC5946302
  7. Scialla JJ, Anderson CA. Dietary acid load: a novel nutritional target in chronic kidney disease? Adv Chronic Kidney Dis. 2013; 20(2):141-9. doi: 10.1053/j.ackd.2012.11.001. PMID: 23439373; PMCID: PMC3604792.
  8. Wachman A, Bernstein D. Diet and osteoporosis. Lancet. 1968; 1(7549):958-9. doi: 10.1016/s0140-6736(68)90908-2. PMID: 4172759.
  9. Remer T, Dimitriou T, Manz F. Dietary potential renal acid load and renal net acid excretion in healthy, free-living children and adolescents. Am J Clin Nutr. 2003; 77(5):1255-60. doi: 10.1093/ajcn/77.5.1255. PMID: 12716680. 10.
  10. Frassetto LA, Todd KM, Morris Jr RC, Sebastian A. Estimation of net endogenous noncarbonic acid production in humans from diet potassium and protein contents. Am J Clin Nutr. 1998; 68(3):576-83. doi: 10.1093/ajcn/68.3.576. PMID: 9734733.
  11. Sellmeyer DE, Stone KL, Sebastian A, Cummings SR. A high ratio of dietary animal to vegetable protein increases the rate of bone loss and the risk of fracture in postmenopausal women. Study of Osteoporotic Fractures Research Group. Am J Clin Nutr. 2001; 73(1):118-22. doi: 10.1093/ajcn/73.1.118. PMID: 11124760.
  12. Wynn E, Krieg MA, Aeschlimann JM, Burckhardt P. Alkaline mineral water lowers bone resorption even in calcium sufficiency: alkaline mineral water and bone metabolism. Bone. 2009; 44(1):120-4. doi: 10.1016/j.bone.2008.09.007. PMID: 18926940.
  13. Shi L, Libuda L, Schönau E, Frassetto L, Remer T. Long term higher urinary calcium excretion within the normal physiologic range predicts impaired bone status of the proximal radius in healthy children with higher potential renal acid load. Bone. 2012; 50(5):1026-31. doi: 10.1016/j.bone.2012.01.026. PMID: 22342797.
  14. Sebastian A, Harris ST, Ottaway JH, Todd KM, Morris RC, Jr. Improved mineral balance and skeletal metabolism in postmenopausal women treated with potassium bicarbonate. N Engl J Med. 1994; 330(25):1776-81. doi: 10.1056/NEJM199406233302502. PMID: 8190153.
  15. Jehle S, Hulter HN, Krapf R. Effect of potassium citrate on bone density, microarchitecture, and fracture risk in healthy older adults without osteoporosis: a randomized controlled trial. J Clin Endocrinol Metab. 2013; 98(1):207-17. doi: 10.1210/jc.2012-3099. PMID: 23162100.
  16. Buclin T, Cosma M, Appenzeller M, Jacquet AF, Décosterd LA, Biollaz J, et al. Diet acids and alkalis influence calcium retention in bone. Osteoporos Int. 2001;12(6):493-9. doi: 10.1007/s001980170095. PMID: 11446566.
  17. Barzel US. The effect of excessive acid feeding on bone. Calcif Tissue Res. 1969;4(2):94-100. doi: 10.1007/BF02279111. PMID: 5363276.
  18. Arnett TR, Dempster DW. Effect of pH on bone resorption by rat osteoclasts in vitro. Endocrinology. 1986; 119(1):119-24. doi: 10.1210/endo-119-1-119. PMID: 3720660.
  19. Bushinsky DA, Frick KK. The effects of acid on bone. Curr Opin Nephrol Hypertens. 2000; 9(4):369-79. doi: 10.1097/00041552-200007000-00008. PMID: 10926173.
  20. Bushinsky DA, Smith SB, Gavrilov KL, Gavrilov LF, Li J, Levi-Setti R. Chronic acidosis-induced alteration in bone bicarbonate and phosphate. Am J Physiol Renal Physiol. 2003; 285(3):F532-9. doi: 10.1152/ajprenal.00128.2003. PMID: 12759230.
  21. Oh MS. Irrelevance of Bone Buffering to Acid-Base Homeostasis in Chronic Metabolic Acidosis. Nephron. 1991;59(1):7-10. doi: 10.1159/000186509. PMID: 1944749.
  22. Uribarri J, Douyon H, Oh MS. A re-evaluation of the urinary parameters of acid production and excretion in patients with chronic renal acidosis. Kidney Int. 1995; 47(2):624-7. doi: 10.1038/ki.1995.79. PMID: 7723250.
  23. Oh MS. New perspectives on acid-base balance. Semin Dial. 2000; 13(4):212-9. doi: 10.1046/j.1525-139x.2000.00061.x. PMID: 10923347.
  24. Macdonald HM, Black AJ, Aucott L, Duthie G, Duthie S, Sandison R, et al. Effect of potassium citrate supplementation or increased fruit and vegetable intake on bone metabolism in healthy postmenopausal women: a randomized controlled trial. Am J Clin Nutr. 2008; 88(2):465-74. doi: 10.1093/ajcn/88.2.465. PMID: 18689384.
  25. Frassetto LA, Hardcastle AC, Sebastian A, Aucott L, Fraser WD, Reid DM, et al. No evidence that the skeletal non-response to potassium alkali supplements in healthy postmenopausal women depends on blood pressure or sodium chloride intake. Eur J Clin Nutr. 2012; 66(12):1315-22. doi: 10.1038/ejcn.2012.151. PMID: 23093337.
  26. Fenton TR, Lyon AW, Eliasziw M, Tough SC, Hanley DA. Meta-analysis of the effect of the acid-ash hypothesis of osteoporosis on calcium balance. J Bone Miner Res. 2009; 24(11):1835-40. doi: 10.1359/jbmr.090515. PMID: 19419322.
  27. Fenton TR, Eliasziw M, Tough SC, Lyon AW, Brown JP, Hanley DA. Low urine pH and acid excretion do not predict bone fractures or the loss of bone mineral density: a prospective cohort study. BMC Musculoskelet Disord. 2010; 11:88. doi: 10.1186/1471-2474-11-88. PMID: 20459740; PMCID: PMC2890599.
  28. Mardon J, Habauzit V, Trzeciakiewicz A, Davicco MJ, Lebecque P, Mercier S, et al. Long-term intake of a high-protein diet with or without potassium citrate modulates acid-base metabolism, but not bone status, in male rats. J Nutr. 2008; 138(4):718-24. doi: 10.1093/jn/138.4.718. PMID: 18356326.
  29. Shariati-Bafghi SE, Nosrat-Mirshekarlou E, Karamati M, Rashidkhani B. Higher dietary acidity is associated with lower bone mineral density in postmenopausal iranian women, independent of dietary calcium intake. Int J Vitam Nutr Res. 2014;84(3-4):206-17. doi: 10.1024/0300-9831/a000207. PMID: 26098484.
  30. Pedone C, Napoli N, Pozzilli P, Lauretani F, Bandinelli S, Ferrucci L, et al. Quality of diet and potential renal acid load as risk factors for reduced bone density in elderly women. Bone. 2010; 46(4):1063-7. doi: 10.1016/j.bone.2009.11.031. PMID: 20005315; PMCID: PMC2881463.
  31. Wynn E, Lanham-New SA, Krieg MA, Whittamore DR, Burckhardt P. Low estimates of dietary acid load are positively associated with bone ultrasound in women older than 75 years of age with a lifetime fracture. J Nutr. 2008; 138(7):1349-54. doi: 10.1093/jn/138.7.1349. PMID: 18567759.
  32. Dargent-Molina P, Sabia S, Touvier M, Kesse E, Bréart G, Clavel-Chapelon F, et al. Proteins, dietary acid load, and calcium and risk of postmenopausal fractures in the E3N French women prospective study. J Bone Miner Res. 2008; 23(12):1915-22. doi: 10.1359/jbmr.080712. PMID: 18665794; PMCID: PMC2929535.
  33. Cao JJ, Johnson LK, Hunt JR. A diet high in meat protein and potential renal acid load increases fractional calcium absorption and urinary calcium excretion without affecting markers of bone resorption or formation in postmenopausal women. J Nutr. 2011; 141(3):391-7. doi: 10.3945/jn.110.129361. PMID: 21248199.
  34. Gunn CA, Weber JL, McGill AT, Kruger MC. Increased intake of selected vegetables, herbs and fruit may reduce bone turnover in post-menopausal women. Nutrients. 2015; 7(4):2499-517. doi: 10.3390/nu7042499. PMID: 25856221; PMCID: PMC4425157.
  35. Gholami F, Naghshi S, Samadi M, Rasaei N, Mirzaei K. Dietary Acid Load and Bone Health: A Systematic Review and Meta-Analysis of Observational Studies. Front Nutr. 2022; 9:869132. doi: 10.3389/fnut.2022.869132. PMID: 35600825; PMCID: PMC9120865.
  36. New SA, MacDonald HM, Campbell MK, Martin JC, Garton MJ, Robins SP, et al. Lower estimates of net endogenous noncarbonic acid production are positively associated with indexes of bone health in premenopausal and perimenopausal women. Am J Clin Nutr. 2004; 79(1):131-8. doi: 10.1093/ajcn/79.1.131. PMID: 14684409.
  37. de Jonge EAL, Koromani F, Hofman A, Uitterlinden AG, Franco OH, Rivadeneira F, et al. Dietary acid load, trabecular bone integrity, and mineral density in an ageing population: the Rotterdam study. Osteoporos Int. 2017; 28(8):2357-2365. doi: 10.1007/s00198-017-4037-9. PMID: 28405729; PMCID: PMC5524850.
  38. Macdonald HM, New SA, Fraser WD, Campbell MK, Reid DM. Low dietary potassium intakes and high dietary estimates of net endogenous acid production are associated with low bone mineral density in premenopausal women and increased markers of bone resorption in postmenopausal women. Am J Clin Nutr. 2005; 81(4):923-33. doi: 10.1093/ajcn/81.4.923. PMID: 15817873.
  39. Mangano KM, Walsh SJ, Kenny AM, Insogna KL, Kerstetter JE. Dietary acid load is associated with lower bone mineral density in men with low intake of dietary calcium. J Bone Miner Res. 2014; 29(2):500-6. doi: 10.1002/jbmr.2053. PMID: 23873776; PMCID: PMC3946957.
  40. Meyer HE, Pedersen JI, Løken EB, Tverdal A. Dietary factors and the incidence of hip fracture in middle-aged Norwegians. A prospective study. Am J Epidemiol. 1997 Jan 15;145(2):117-23. doi: 10.1093/oxfordjournals.aje.a009082. PMID: 9006308.
  41. Sahni S, Cupples LA, Mclean RR, Tucker KL, Broe KE, Kiel DP, et al. Protective effect of high protein and calcium intake on the risk of hip fracture in the Framingham offspring cohort. Bone Miner Res. 2010 Dec;25(12):2770-6. doi: 10.1002/jbmr.194. Epub 2010 Jul 26. Erratum in: J Bone Miner Res. 2011; 26(2):439. PMID: 20662074; PMCID: PMC3179277.
  42. New SA, Robins SP, Campbell MK, Martin JC, Garton MJ, Bolton-Smith C, et al. Dietary influences on bone mass and bone metabolism: further evidence of a positive link between fruit and vegetable consumption and bone health? Am J Clin Nutr. 2000; 71(1):142-51. doi: 10.1093/ajcn/71.1.142. PMID: 10617959.
  43. Macdonald HM, New SA, Golden MH, Campbell MK, Reid DM. Nutritional associations with bone loss during the menopausal transition: evidence of a beneficial effect of calcium, alcohol, and fruit and vegetable nutrients and of a detrimental effect of fatty acids. Am J Clin Nutr. 2004; 79(1):155-65. doi: 10.1093/ajcn/79.1.155. PMID: 14684412.
  44. Hamidi M, Boucher BA, Cheung AM, Beyene J, Shah PS. Fruit and vegetable intake and bone health in women aged 45 years and over: a systematic review. Osteoporos Int. 2011; 22(6):1681-93. doi: 10.1007/s00198-010-1510-0. PMID: 21165601.
  45. Byberg L, Bellavia A, Orsini N, Wolk A, Michaëlsson K. Fruit and vegetable intake and risk of hip fracture: a cohort study of Swedish men and women. Bone Miner Res. 2015; 30(6):976-84. doi: 10.1002/jbmr.2384. PMID: 25294687.
  46. Tucker KL, Hannan MT, Chen H, Cupples LA, Wilson PW, Kiel DP. Potassium, magnesium, and fruit and vegetable intakes are associated with greater bone mineral density in elderly men and women. Am J Clin Nutr. 1999; 69(4):727-36. doi: 10.1093/ajcn/69.4.727. PMID: 10197575.
  47. Schneider DL, Barrett-Connor EL. Urinary N-telopeptide levels discriminate normal, osteopenic, and osteoporotic bone mineral density. Arch Intern Med. 1997; 157(11):1241-5. PMID: 9183236.
  48. Remer T, Manz F. Potential renal acid load of foods and its influence on urine pH. Arch Intern Med. 1997; 157(11):1241-5. PMID: 9183236.
  49. Mühlbauer RC, Lozano A, Reinli A. Onion and a mixture of vegetables, salads, and herbs affect bone resorption in the rat by a mechanism independent of their base excess. J Bone Miner Res. 2002; 17(7):1230-6. doi: 10.1359/jbmr.2002.17.7.1230. PMID: 12096836.
  50. Mühlbauer RC, Lozano A, Reinli A, Wetli H. Various selected vegetables, fruits, mushrooms and red wine residue inhibit bone resorption in rats. J Nutr. 2003; 133(11):3592-7. doi: 10.1093/jn/133.11.3592. PMID: 14608079.
  51. Kerstetter JE, O'Brien KO, Caseria DM, Wall DE, Insogna KL. The impact of dietary protein on calcium absorption and kinetic measures of bone turnover in women. J Clin Endocrinol Metab. 2005; 90(1):26-31. doi: 10.1210/jc.2004-0179. PMID: 15546911.
  52. Kerstetter JE, O’Brien KO, Insogna KL. Dietary protein affects intestinal calcium absorption. Am J Clin Nutr. 1998; 68(4):859-65. doi: 10.1093/ajcn/68.4.859. PMID: 9771863.
  53. Hunt JR, Johnson LK, Fariba Roughead Z. Dietary protein and calcium interact to influence calcium retention: a controlled feeding study. Am J Clin Nutr. 2009; 89(5):1357-65. doi: 10.3945/ajcn.2008.27238. PMID: 19279077.
  54. Mahalko JR, Sandstead HH, Johnson L, Milne DB. Effect of a moderate increase in dietary protein on the retention and excretion of Ca, Cu, Fe, Mg, P, and Zn by adult males. Am J Clin Nutr. 1983; 37(1):8-14. doi: 10.1093/ajcn/37.1.8. PMID: 6849284.
  55. Hegsted M, Linkswiler HM. Long-term effects of level of protein intake on calcium metabolism in young adult women. J Nutr. 1981; 111(2):244-51. doi: 10.1093/jn/111.2.244. PMID: 7463168.
  56. Zemel M. Calcium utilization: effect of varying level and source of dietary protein. Am J Clin Nutr. 1988; 48(3 Suppl):880-3. doi: 10.1093/ajcn/48.3.880. PMID: 3414594.
  57. Gunn CA, Weber JL, Kruger MC. Midlife women, bone health, vegetables, herbs and fruit study. The Scarborough Fair study protocol. BMC Public Health. 2013; 13:23. doi: 10.1186/1471-2458-13-23. PMID: 23305630; PMCID: PMC3552690.